首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the beta-1,3-glucan synthase bgs2p synthesizes linear beta-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between beta-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with beta-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4(+), a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4Delta diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4(+) is strongly induced during sporulation and a yellow fluorescent protein (YFP)-gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe.  相似文献   

2.
Liu J  Tang X  Wang H  Balasubramanian M 《FEBS letters》2000,478(1-2):105-108
Previously we have reported that Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. In this report, we present evidence that S. pombe Bgs2p, a 1,3-beta-glucan synthase that shows 56% identity to Drc1p/Cps1p, is essential for maturation of ascospore wall in S. pombe, but is not required for vegetative growth. Diploid cells homozygous for the bgs2-null mutation, as well as homothallic bgs2-null mutant haploids undergo meiosis normally. However, a 1, 3-beta-glucan containing spore wall is not assembled in these cells. The spores resulting from meiosis of a bgs2-null mutant lyse upon release from the ascus and are therefore inviable. Using a green fluorescent protein-tagged Bgs2p, we demonstrate that Bgs2p is localized at the periphery of the ascospores during meiosis and sporulation. However, Bgs2p is not detected in vegetative cells. We conclude that Bgs2p is required for 1,3-beta-glucan synthesis during ascospore wall maturation.  相似文献   

3.
During sporulation in Saccharomyces cerevisiae, the four haploid nuclei are encapsulated within multilayered spore walls. Glucan, the major constituent of the spore wall, is synthesized by 1,3-beta-glucan synthase, which is composed of a putative catalytic subunit encoded by FKS1 and FKS2. Although another homolog, encoded by FKS3, was identified by homology searching, its function is unknown. In this report, we show that FKS2 and FKS3 are required for spore wall assembly. The ascospores of fks2 and fks3 mutants were enveloped by an abnormal spore wall with reduced resistance to diethyl ether, elevated temperatures, and ethanol. However, deletion of the FKS1 gene did not result in a defective spore wall. The construction of fusion genes that expressed Fks1p and Fks2p under the control of the FKS2 promoter revealed that asci transformed with FKS2p-driven Fks1p and Fks2p were resistant to elevated temperatures, which suggests that the expression of FKS2 plays an important role in spore wall assembly. The expression of FKS1p-driven Fks3p during vegetative growth did not affect 1,3-beta-glucan synthase activity in vitro but effectively suppressed the growth defect of the temperature-sensitive fks1 mutant by stabilizing Rho1p, which is a regulatory subunit of glucan synthase. Based on these results, we propose that FKS2 encodes the primary 1,3-beta-glucan synthase in sporulation and that FKS3 is required for normal spore wall formation because it affects the upstream regulation of 1,3-beta-glucan synthase.  相似文献   

4.
We have cloned chs1+, a Schizosaccharomyces pombe gene with similarity to class II chitin synthases, and have shown that it is responsible for chitin synthase activity present in cell extracts from this organism. Analysis of this activity reveals that it behaves like chitin synthases from other fungi, although with specific biochemical characteristics. Deletion or overexpression of this gene does not lead to any apparent defect during vegetative growth. In contrast, chs1+ expression increases significantly during sporulation, and this is accompanied by an increase in chitin synthase activity. In addition, spore formation is severely affected when both parental strains carry a chs1 deletion, as a result of a defect in the synthesis of the ascospore cell wall. Finally, we show that wild-type, but not chs1-/chs1-, ascospore cell walls bind wheatgerm agglutinin. Our results clearly suggest the existence of a relationship between chs1+, chitin synthesis and ascospore maturation in S. pombe.  相似文献   

5.
We have previously shown that mutants in the cardiolipin (CL) pathway exhibit temperature-sensitive growth defects that are not associated with mitochondrial dysfunction. The pgs1Delta mutant, lacking the first enzyme of the CL pathway, phosphatidylglycerolphosphate synthase (Pgs1p), has a defective cell wall due to decreased beta-1,3-glucan (Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Mol. Biol. Cell 16, 665-675). Disruption of KRE5, a gene involved in cell wall biogenesis, restores beta-1,3-glucan synthesis and suppresses pgs1Delta temperature sensitivity. To gain insight into the mechanisms underlying the cell wall defect in pgs1Delta, we show in the current report that pgs1Delta cells have reduced glucan synthase activity and diminished levels of Fks1p, the glucan synthase catalytic subunit. In addition, activation of Slt2p, the downstream effector of the protein kinase C (PKC)-activated cell integrity pathway, was defective in pgs1Delta. The kre5W1166X suppressor restored Slt2p activation and dramatically increased (>10-fold) mRNA levels of FKS2, the alternate catalytic subunit of glucan synthase, partially restoring glucan synthase activity. Consistent with these results, up-regulation of PKC-Slt2 signaling and overexpression of FKS1 or FKS2 alleviated sensitivity of pgs1Delta to cell wall-perturbing agents and restored growth at elevated temperature. These findings demonstrate that functional Pgs1p is essential for cell wall biogenesis and activation of the PKC-Slt2 signaling pathway.  相似文献   

6.
Schizosaccharomyces pombe Rho1p is essential, directly activates β-1,3-glucan synthase, and participates in the regulation of morphogenesis. In S. pombe, Rho1p is activated by at least three guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p, and Rgf3p. In this study we show that Rgf2p is a Rho1p GEF required for sporulation. The rgf2+ deletion did not affect forespore membrane formation and the nuclei were encapsulated properly. However, the mutant ascospores appeared dark and immature. The rgf2Δ zygotes were not able to release the ascospores spontaneously, and the germination efficiency was greatly reduced compared to wild-type (wt) spores. This phenotype resembles that of the mutants in bgs2+, which encodes a sporulation-specific glucan synthase subunit. In fact, glucan synthase activity was diminished in sporulating rgf2Δ diploids. Rgf2p also plays a role in β-glucan biosynthesis during vegetative growth. Overexpression of rgf2+ specifically increased GTP-bound Rho1p, caused changes in cell morphology, and elicited an increase in β-1,3-glucan synthase activity. Moreover, the simultaneous disruption of rgf1+ and rgf2+ was lethal and both Rgf1p and Rgf2p were able to partially substitute for each other. Our results suggest that Rgf1p and Rgf2p are alternative GEFs with an essential overlapping function in Rho1p activation during vegetative growth.  相似文献   

7.
M Arellano  A Durn    P Prez 《The EMBO journal》1996,15(17):4584-4591
The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis.  相似文献   

8.
Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of several kinetic parameters of (1,3)beta-D-glucan synthase activity revealed no differences between S. pombe wild-type and pbr1 mutant strains except in the 50% inhibitory concentration for papulacandin B of the synthases (about a 50-fold increase in mutant activity). Inactivation of the synthase activity of both yeasts after in vivo treatment with the antifungal agent showed that mutant synthases were more resistant than the corresponding wild-type ones. Detergent dissociation of the S. pombe synthase into soluble and particulate fractions and subsequent reconstitution indicated that the resistance character of pbr1 mutants resides in the particulate fraction of the enzyme. Cloning and sequencing of PBR1 from S. cerevisiae revealed a gene identical to others recently reported (FKS1, ETG1, CWH53, and CND1). Its disruption leads to reduced levels of both (1,3)beta-D-glucan synthase activity and the alkali-insoluble cell wall fraction. Transformants containing the PBR1 gene reverse the defect in (1,3)beta-D-glucan synthase. It is concluded that Pbr1p is probably part of the (1,3)beta-D-glucan synthase complex.  相似文献   

9.
10.
β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3+, a new member of this family. bgs3+ was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3+ is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.  相似文献   

11.
The fine structural characteristics of wild-type and sporulation-deficient mutants (spo) of yeast were examined. The results indicate that prospore wall formation, growth and closure, and nuclear budding and separation at meiosis represent parallel and normally coordinated developmental pathways of morphological change whose integration can be disrupted by gene mutation. At the restrictive temperature most cells of spo 1-1/spo 1-1 diploids terminate prior to the first spindle body duplication. In spo 2-1/spo 2-1 diploids the nucleus divides precociously both at meiosis I and at meiosis II. This aberrant behavior is followed by the formation of anucleate spores. In spo 3-1/spo 3-1 diploids development is normal until meiosis II. At this point nuclear segregation becomes retarded relative to ascospore delimitation. As a result much of the nuclear material fails to be incorporated into the ascospores.  相似文献   

12.
Cytokinesis is a crucial event in the cell cycle of all living cells. In fungal cells, it requires co-ordinated contraction of an actomyosin ring and synthesis of both plasmatic membrane and a septum structure that will constitute the new cell wall end. Schizosaccharomyces pombe contains four essential putative (1,3)beta-d-glucan synthase catalytic subunits, Bgs1p to Bgs4p. Here we examined the function of Bgs1p in septation by studying the lethal phenotypes of bgs1(+) shut-off and bgs1Delta cells and demonstrated that Bgs1p is responsible and essential for linear (1,3)beta-d-glucan and primary septum formation. bgs1(+) shut-off generates a more than 300-fold Bgs1p reduction, but the septa still present large amounts of disorganized linear (1,3)beta-d-glucan and partial primary septa. Conversely, both structures are absent in bgs1Delta cells, where there is no Bgs1p. The septum analysis of bgs1(+)-repressed cells indicates that linear (1,3)beta-d-glucan is necessary but not sufficient for primary septum formation. Linear (1,3)beta-d-glucan is the polysaccharide that specifically interacts with the fluorochrome Calcofluor white in fission yeast. We also show that in the absence of Bgs1p abnormal septa are formed, but the cells cannot separate and eventually die.  相似文献   

13.
Glycosylphosphatidylinositol (GPI)-anchored proteins are essential for normal cellular morphogenesis and have an additional role in mediating cross-linking of glycoproteins to cell wall glucan in yeast cells. Although many GPI-anchored proteins have been characterized in Saccharomyces cerevisiae, none have been reported for well-characterized GPI-anchored proteins in Schizosaccharomyces pombe to date. Among the putative GPI-anchored proteins in S. pombe, four alpha-amylase homologs (Aah1p-Aah4p) have putative signal sequences and C-terminal GPI anchor addition signals. Disruption of aah3(+) resulted in a morphological defect and hypersensitivity to cell wall-degrading enzymes. Biochemical analysis showed that Aah3p is an N-glycosylated, GPI-anchored membrane protein localized in the membrane and cell wall fractions. Conjugation and sporulation were not affected by the aah3(+) deletion, but the ascal wall of aah3Delta cells was easily lysed by hydrolases. Expression of aah3 alleles in which the conserved aspartic acid and glutamic acid residues required for hydrolase activity were replaced with alanine residues failed to rescue the morphological and ascal wall defects of aah3Delta cells. Taken together, these results indicate that Aah3p is a GPI-anchored protein and is required for cell and ascal wall integrity in S. pombe.  相似文献   

14.
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.  相似文献   

15.
16.
Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.  相似文献   

17.
18.
A. M. Delange 《Genetics》1981,97(2):237-246
A newly induced mutant of Neurospora, when crossed with an ad-3A mutant, produces asci with four viable black and four inviable white ascospores. The survivors always contain the new mutant allele, never ad-3A. The new allele, which is called SK(ad-3A) (for spore killer of ad-3A), is located at or very near the ad-3A locus.--In crosses homozygous for ad-3A, each ascus contains only inviable white ascospores. This defect in ascospore maturation is complemented by the wild-type allele, ad-3A+ (crosses heterozygous for ad-3A and ad-3A+ produce mainly viable ascospores), but it is not complemented by the new SK(ad-3A) allele (all ad-3A ascospores from crosses heterozygous for SK(ad-3A) and ad-3A are white and inviable). In crosses homozygous for SK(ad-3A) or heterozygous for SK(ad-3A) and ad-3A+, each ascus contains only viable black ascospores. SK(ad-3A) does not require adenine for growth, and forced heterokaryons between SK(ad-3A) and ad-3A grow at wild-type rates and produce conidia of both genotypes with approximately equal frequency. Thus, the action of SK(ad-3A) is apparently restricted to ascospore formation. Possible mechanisms of the action of this new allele are discussed.  相似文献   

19.
For the genetic dissection of sexual sporulation in Aspergillus nidulans, we started a collection of ascosporeless mutants. After mutagenization of conidiospores with high doses of UV, we isolated 20 mutants with defects in ascospore formation. We crossed these mutants in two successive rounds with the wild-type strain. Eighteen of the 20 isolated mutants produced progeny with the original mutant phenotype in these crosses, and these mutants were further analyzed. All 18 analyzed mutations were recessive to wild type. We assigned them to 15 complementation groups, based on crosses between mutants. The mutants could be classified as follows according to their cytological phenotype: (1) no croziers, (2) arrest at prekaryogamy, (3) arrest in early meiotic prophase, (4) arrest in late meiotic prophase, (5) arrest in meiotic metaphase I, (6) defective postmeiotic mitosis and/or deliniation of ascospores, and (7) slow progression through the postmeiotic stages of ascospore formation. A large proportion of the mutants, namely 11 of 18, arrested in meiotic prophase or metaphase I. We discuss a possible approach for isolating the wild-type alleles of the genes that carry the sexual sporulation mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号