首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal microsomal cytochrome P-450 monooxygenase-dependent metabolism of arachidonic acid generates a series of regioisomeric epoxyeicosatrienoic acids that can be further metabolized by soluble epoxide hydrolase to the corresponding dihydroxyeicosatrienoic acids. Evidence exists that these metabolites affect renal function and, in particular, blood pressure regulation. To examine this possibility, blood pressure and renal arachidonic acid metabolism were examined in mice with a targeted disruption of the soluble epoxide hydrolase gene. Systolic blood pressure of male soluble epoxide hydrolase-null mice was lower compared with wild-type mice in both the absence and presence of dietary salt loading. Both female soluble epoxide hydrolase-null and wild-type female mice also had significantly lower systolic blood pressure than male wild-type mice. Renal formation of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids was markedly lower for soluble epoxide hydrolase-null versus wild-type mice of both sexes. Although disruption of soluble epoxide hydrolase in female mice had minimal effects on blood pressure, deletion of this gene feminized male mice by lowering systolic blood pressure and altering arachidonic acid metabolism. These data provide the first direct evidence for a role for soluble epoxide hydrolase in blood pressure regulation and identify this enzyme as a novel and attractive target for therapeutic intervention in hypertension.  相似文献   

2.
3.
4.
Arachidonic acid-derived epoxides, epoxyeicosatrienoic acids, are important regulators of vascular homeostasis and inflammation, and therefore manipulation of their levels is a potentially useful pharmacological strategy. Soluble epoxide hydrolase converts epoxyeicosatrienoic acids to their corresponding diols, dihydroxyeicosatrienoic acids, modifying or eliminating the function of these oxylipins. To better understand the phenotypic impact of Ephx2 disruption, two independently derived colonies of soluble epoxide hydrolase-null mice were compared. We examined this genotype evaluating protein expression, biofluid oxylipin profile, tissue oxylipin production capacity, and blood pressure. Ephx2 gene disruption eliminated soluble epoxide hydrolase protein expression and activity in liver, kidney, and heart from each colony. Plasma levels of epoxy fatty acids were increased, and fatty acid diols levels were decreased, while measured levels of lipoxygenase- and cyclooxygenase-dependent oxylipins were unchanged. Liver and kidney homogenates also show elevated epoxide fatty acids. However, in whole kidney homogenate a 4-fold increase in the formation of 20-hydroxyeicosatetraenoic acid was measured along with a 3-fold increase in lipoxygenase-derived hydroxylation and prostanoid production. Unlike previous reports, however, neither Ephx2-null colony showed alterations in basal blood pressure. Finally, the soluble epoxide hydrolase-null mice show a survival advantage following acute systemic inflammation. The data suggest that blood pressure homeostasis may be achieved by increasing production of the vasoconstrictor, 20-hydroxyeicosatetraenoic acid in the kidney of the Ephx2-null mice. This shift in renal metabolism is likely a metabolic compensation for the loss of the soluble epoxide hydrolase gene.  相似文献   

5.
Endogenous, constitutive soluble epoxide hydrolase in mice 3T3 cells was localized via immunofluorescence microscopy exclusively in peroxisomes, whereas transiently expressed mouse soluble epoxide hydrolase (from clofibrate-treated liver) accumulated only in the cytosol of 3T3 and HeLa cells. When the C-terminal lie of mouse soluble epoxide hydrolase was mutated to generate a prototypic putative type 1 PTS (-SKI to -SKL), the enzyme targeted to peroxisomes. The possibility that soluble epoxide hydrolase-SKI was sorted slowly to peroxiosmes from the cytosol was examined by stably expressing rat soluble epoxide hydrolase-SKI appended to the green fluorescent protein. Green fluorescent protein soluble epoxide hydrolase-SKI was strictly cytosolic, indicating that -SKI was not a temporally inefficient putative type 1 PTS. Import of soluble epoxide hydrolase-SKI into peroxisomes in plant cells revealed that the context of -SKI on soluble epoxide hydrolase was targeting permissible. These results show that the C-terminal -SKI is a non-functional putative type 1 PTS on soluble epoxide hydrolase and suggest the existence of distinct cytosolic and peroxisomal targeting variants of soluble epoxide hydrolase in mouse and rat.  相似文献   

6.
A lambda gt11 expression library constructed from human liver mRNA was screened with an antibody against human microsomal xenobiotic epoxide hydrolase. The clone pheh32 contains an insert of 1742 base pairs with an open reading frame coding for a protein of 455 amino acids with a calculated Mr of 52,956. The nucleotide sequence is 77% similar to the previously reported rat xenobiotic epoxide hydrolase cDNA sequence. The deduced amino acid sequence of the human epoxide hydrolase is 80% similar to the previously reported rabbit and 84% similar to the deduced rat protein sequence. The NH2-terminal amino acids deduced from the human xenobiotic epoxide hydrolase cDNA are identical to the published 19 NH2-terminal amino acids of the purified human xenobiotic epoxide hydrolase protein. Northern blot analysis revealed a single mRNA band of 1.8 kilobases. Southern blot analysis indicated that there is only one gene copy/haploid genome. The human xenobiotic epoxide hydrolase gene was assigned to the long arm of human chromosome 1. Several restriction fragment length polymorphisms were observed with the human epoxide hydrolase cDNA. pheh32 was expressed as enzymatically active protein in cultured monkey kidney cells (COS-1).  相似文献   

7.
The gene for the microsomal xenobiotic rat liver epoxide hydrolase has been isolated and characterized. Clones were obtained from a Wistar Furth Charon 35 genomic library by hybridization with a full-length epoxide hydrolase cDNA. The gene for the xenobiotic epoxide hydrolase is approximately 16 kilobases in length and consists of 9 exons ranging in size from 109 to 420 base pairs and 8 intervening sequences, the largest of which is 3.2 kilobases. S1-nuclease mapping, primer extension studies, and sequence analysis were used to determine the 5' cap site and the size of the first exon (170 base pairs). Regulatory sequences analogous to TATA, CCAAT, and core enhancer sequences were noted in the 5'-flanking region of the gene. The cDNA and gene for epoxide hydrolase displayed nucleotide sequence identity although they were isolated from different rat strains. Also, Southern blot analysis of restricted liver DNA from inbred Fischer 344 and Wistar Furth rat strains, and outbred Sprague-Dawley rats indicated a high degree of structural similarity for the epoxide hydrolase gene within these three strains. Only a single functional epoxide hydrolase gene was identified and no evidence of hybridization to the genes for the microsomal cholesterol epoxide hydrolase or the cytosolic epoxide hydrolase was observed. However, a pseudogene for the microsomal xenobiotic epoxide hydrolase was isolated and characterized from the genomic library.  相似文献   

8.
The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure-activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolase enzymes. The inhibitors also showed potent inhibition of humans soluble epoxide hydrolase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolase inhibition towards the M. tuberculosis enzymes.  相似文献   

9.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   

10.
Epoxide hydrolase activity was produced during the exponential and stationary growth phases of the fungus Beauveria bassiana ATCC 7159. It was completely cell-associated. After cell disruption epoxide hydrolase activity was recovered in both the cell debris (EH "A") and the soluble fraction (EH "B"), but not in the membrane fraction. Activity assays of these fractions with two different substrates indicated that their substrate specificity, as well as the corresponding E value and, to a lesser extent, their regioselectivity, were different. Also, we could observe that the absolute configuration of the residual epoxide was opposite. This indicates that these two epoxide hydrolase activities are substantially different and are, therefore, interestingly complementary biocatalysts for the preparation of the corresponding epoxides and/or vicinal diols in nearly enantiopure form.  相似文献   

11.
12.
We describe a convenient method for amplification of novel epoxide hydrolase-encoding genes directly from the metagenome. In a first step, small specific regions of putative epoxide hydrolase genes were amplified by using PCR with degenerate consensus primers specific for prokaryotic epoxide hydrolases, and environmental DNA as template. In a second step, the sequence obtained from one randomly selected epoxide hydrolase gene fragment served as the starting point for genome-walking PCR. This technique enabled us to recover a complete novel epoxide hydrolase gene with a GC content of 64.7%. A database search revealed that this novel gene was 44% and 43% identical to two putative epoxide hydrolases from Ralstonia metallidurans and Ralstonia eutropha, respectively, at the amino acid level, the highest among all orthologs searched. The gene, which encodes a polypeptide with a molecular mass of 34 kDa, was cloned and overexpressed in Escherichia coli. The recombinant enzyme showed hydrolyzing activity toward aliphatic terminal epoxides with chain lengths ranging from 6 to 10 carbon atoms. In all cases, the enantioselectivity of the enzyme was low. Determination of the regioselectivity coefficients αR and αS revealed that the oxirane ring was attacked almost exclusively at the non-substituted carbon of the R-epoxide. The preference for attack at the non-substituted ring carbon of the S-epoxide was dependent on the chain length of the substrate and ranged from 55% to 78%, resulting in a partially enantioconvergent reaction.  相似文献   

13.
An epoxide hydrolase gene of about 0.8 kb was cloned from Rhodococcus opacus ML-0004, and the open reading frame (ORF) sequence predicted a protein of 253 amino acids with a molecular mass of about 28 kDa. An expression plasmid carrying the gene under the control of the tac promotor was introduced into Escherichia coli, and the epoxide hydrolase gene was successfully expressed in the recombinant strains. Some characteristics of purified recombinant epoxide hydrolase were also studied. Epoxide hydrolase showed a high stereospecificity for l(+)-tartaric acid, but not for d(+)-tartaric acid. The epoxide hydrolase activity could be assayed at the pH ranging from 3.5 to 10.0, and its maximum activity was obtained between pH 7.0 and 7.5. The enzyme was sensitive to heat, decreasing slowly between 30°C and 40°C, and significantly at 45°C. The enzyme activity was activated by Ca2+ and Fe2+, while strongly inhibited by Ag+ and Hg+, and slightly inhibited by Cu2+, Zn2+, Ba2+, Ni+, EDTA–Na2 and fumarate.  相似文献   

14.
A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.  相似文献   

15.
We cloned and characterized the epoxide hydrolase gene, EPH1, from Rhodotorula glutinis. The EPH1 open reading frame of 1230 bp was interrupted by nine introns and encoded a polypeptide of 409 amino acids with a calculated molecular mass of 46.3 kDa. The amino acid sequence was similar to that of microsomal epoxide hydrolase, which suggests that the epoxide hydrolase of R. glutinis also belongs to the α/β hydrolase fold family. EPH1 cDNA was expressed in Escherichia coli and resting cells showed a specific activity of 200 nmol min−1 (mg protein)−1 towards 1,2-epoxyhexane. Received: 2 August 1999 / Received revision: 4 October 1999 / Accepted: 10 October 1999  相似文献   

16.
Cloning and expression of soluble epoxide hydrolase from potato   总被引:6,自引:1,他引:5  
Five cDNAs encoding a putative soluble epoxide hydrolase (sEH) from potato were isolated and characterized. The cDNAs contained open reading frames encoding 36 kDa polypeptides which were highly homologous to the carboxy terminal region of mammalian sEH. When one of the cDNAs was expressed in a baculovirus system a soluble 38 kDa protein with epoxide hydrolase activity was produced. The recombinant enzyme hydrolyzed a commonly used diagnostic substrate for the soluble form of mammalian EH. Inhibitor profiles of the recombinant potato and mammalian sEH were also similar. The expression of sEH in potato was found to be regulated by both developmental and environmental signals. Levels of mRNA for sEH were higher in meristematic tissue than in mature leaves. This mRNA was also observed to accumulate on wounding and application of exogenous methyl jasmonate.  相似文献   

17.
18.
19.
Several P450 enzymes localized in the endoplasmic reticulum and thought to be involved primarily in xenobiotic metabolism, including mouse and rat CYP1A1 and mouse CYP1A2, have also been found to translocate to mitochondria. We report here that the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces enzymatically active CYP1A4/1A5, the avian orthologs of mammalian CYP1A1/1A2, in chick embryo liver mitochondria as well as in microsomes. P450 proteins and activity levels (CYP1A4-dependent 7-ethoxyresorufin-O-deethylase and CYP1A5-dependent arachidonic acid epoxygenation) in mitochondria were 23-40% of those in microsomes. DHET formation by mitochondria was twice that of microsomes and was attributable to a mitochondrial soluble epoxide hydrolase as confirmed by Western blotting with antiEPHX2, conversion by mitochondria of pure 11,12 and 14,15-EET to the corresponding DHETs and inhibition of DHET formation by the soluble epoxide hydrolase inhibitor, 12(-3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). TCDD also suppressed formation of mitochondrial and microsomal 20-HETE. The findings newly identify mitochondria as a site of P450-dependent arachidonic acid metabolism and as a potential target for TCDD effects. They also demonstrate that mitochondria contain soluble epoxide hydrolase and underscore a role for CYP1A in endobiotic metabolism.  相似文献   

20.
V Joste  J Meijer 《FEBS letters》1989,249(1):83-88
Free and membrane-bound polyribosomes were isolated from the livers of untreated and clofibrate-treated male C57B1/6 mice. The in vitro translation products were investigated in a rabbit reticulocyte cell-free system by immunoprecipitation of cytosolic epoxide hydrolase, catalase and albumin. The soluble forms of epoxide hydrolase present in cytosol and in peroxisomes were found to be synthesized on free polyribosomes and could not be distinguished from each other, since only one primary translation product was found with the methods used. Clofibrate treatment was found to increase total protein synthesis, synthesis of soluble epoxide hydrolase and translational efficiency of the isolated polyribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号