首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to test the hypothesis that residues critical for ligand- and temperature-induced clustering of integrin alphaIIbbeta3 are present on its extracellular domain. Sucrose density gradient sedimentation was used to examine the effects of ligand-mimetic peptides and physiological temperature on the oligomeric state of a soluble recombinant ectodomain variant of the alphaIIbbeta3 integrin, alphaIIbDelta962beta3Delta692, and its full-length counterpart. Both the ectodomain construct, isolated from High Five insect cell culture supernatants, and alphaIIbbeta3, isolated from human blood platelets, exhibited similar weight-average sedimentation coefficients at 23 degrees C, in the absence and presence of the ligand-mimetic peptide eptifibatide. These observations indicate that alphaIIbbeta3's ectodomain exhibits a similar extended conformation in both its free and ligand-bound states. Oligomerization was examined by incubation of both alphaIIbDelta962beta3Delta692 and full-length receptors at 37 degrees C, in the presence or absence of ligand-mimetic. Minimal oligomerization was observed with alphaIIbDelta962beta3Delta692. In contrast, full-length alphaIIbbeta3 exhibited substantial temperature-induced increases in its distribution of sedimenting species, indicative of thermal aggregation. These observations suggest that optimum oligomerization requires the participation of the integrin's transmembrane and cytoplasmic regions. In vivo, clustering of ligand-bound integrins may enhance signaling by increasing the local concentration of intracellular integrin-associated proteins.  相似文献   

2.
We have employed echistatin, a 5.4 kDa snake venom disintegrin, as a model protein to investigate the paradox that small ligand-mimetics can bind to the resting alphaIIbbeta3 integrin while adhesive macromolecules cannot. We characterized the interactions between purified human alphaIIbbeta3 and two recombinant echistatin variants: rEch (1-49) M28L, chosen for its selectivity toward beta3-integrins, and rEch (1-40) M28L, a carboxy-terminal truncation mutant. While both contain an RGD integrin targeting sequence, only rEch (1-49) M28L was an effective inhibitor of alphaIIbbeta3 function. Electron microscopy of rotary shadowed specimens yielded a variety of alphaIIbbeta3 conformers ranging from compact, spherical particles (maximum dimension 22 nm) to the classical "head with two tails" forms (32 nm). The population of larger particles (42-56 nm) increased from 17% to 28% in the presence of rEch (1-49) M28L, indicative of ligand-induced oligomerization. Sedimentation velocity measurements demonstrated that both full length and truncated echistatin perturbed alphaIIbbeta3's solution structure, yielding slower-sedimenting open conformers. Dynamic light scattering showed that rEch (1-49) M28L protected alphaIIbbeta3 from thermal aggregation, raising its transition mid-point from 46 degrees C to 69 degrees C; a smaller shift resulted with rEch (1-40) M28L. Sedimentation equilibrium demonstrated that both echistatin ligands induced substantial alphaIIbbeta3 dimerization. van't Hoff analysis revealed a pattern of entropy/enthalpy compensation similar to tirofiban, a small RGD ligand-mimetic that binds tightly to alphaIIbbeta3, but yields smaller conformational perturbations than echistatin. We propose that echistatin may serve as a paradigm for understanding multidomain adhesive macromolecules because its ability to modulate alphaIIbbeta3's structure resides on an RGD loop, while full disintegrin activity requires an auxiliary site that includes the carboxy-terminal nine amino acid residues.  相似文献   

3.
This study tested the hypothesis that high-affinity binding of macromolecular ligands to the alphaIIbbeta3 integrin is tightly coupled to binding-site remodeling, an induced-fit process that shifts a conformational equilibrium from a resting toward an open receptor. Interactions between alphaIIbbeta3 and two model ligands-echistatin, a 6-kDa recombinant protein with an RGD integrin-targeting sequence, and fibrinogen's gamma-module, a 30-kDa recombinant protein with a KQAGDV integrin binding site-were measured by sedimentation velocity, fluorescence anisotropy, and a solid-phase binding assay, and modeled by molecular graphics. Studying echistatin variants (R24A, R24K, D26A, D26E, D27W, D27F), we found that electrostatic contacts with charged residues at the alphaIIb/beta3 interface, rather than nonpolar contacts, perturb the conformation of the resting integrin. Aspartate 26, which interacts with the nearby MIDAS cation, was essential for binding, as D26A and D26E were inactive. In contrast, R24K was fully and R24A partly active, indicating that the positively charged arginine 24 contributes to, but is not required for, integrin recognition. Moreover, we demonstrated that priming--i.e., ectodomain conformational changes and oligomerization induced by incubation at 35 degrees C with the ligand-mimetic peptide cHarGD--promotes complex formation with fibrinogen's gamma-module. We also observed that the gamma-module's flexible carboxy terminus was not required for alphaIIbbeta3 integrin binding. Our studies differentiate priming ligands, which bind to the resting receptor and perturb its conformation, from regulated ligands, where binding-site remodeling must first occur. Echistatin's binding energy is sufficient to rearrange the subunit interface, but regulated ligands like fibrinogen must rely on priming to overcome conformational barriers.  相似文献   

4.
Savignygrin, a alphaIIbbeta3 antagonist presents the RGD sequence on the substrate-binding loop of the (BPTI-fold). This study investigated whether this is the only integrin-targeting motif associated with its mechanism. It forms a tight-binding complex with alphaIIbbeta3 that is resistant to SDS dissociation under reducing and non-reducing conditions, but not to temperature or EDTA. The same complex is formed on resting and activated platelets, as well as aggregated platelets that have been disaggregated with savignygrin. Binding of FITC labeled savignygrin to platelets show that the binding kinetics and affinity of savignygrin is similar for resting and activated platelets (Kd approximately 50-70 nM). Binding to resting or activated platelets was significantly inhibited by two savignygrin peptide fragments, S2 (GSRGDEDATFG) and S3 (FDREDGGSRQG) that correspond with two specific loop-like areas in the structure of savignygrin that together form a continuous binding interface. The inability of S3 to inhibit platelet aggregation indicates that it targets a novel ligand-binding site. A model of alphaIIbbeta3 based on the recent crystal structure of alphavbeta3 into which the RGD sequence of savignygrin was docked shows that savignygrin lies along the interface formed by the two subunits. A novel mode of integrin antagonism is indicated that includes the targeting of distinct sites on the alphaIIbbeta3 subunits. The S2 and S3 loops are not involved in the mechanisms of the related soft tick blood coagulation inhibitors and suggest that this allowed their evolution as integrin targeting motifs.  相似文献   

5.
Activation of blood platelets by physiological stimuli (e.g. thrombin, ADP) at sites of vascular injury induces inside-out signaling, resulting in a conformational change of the prototype integrin alphaIIbbeta3 from an inactive to an active state competent to bind soluble fibrinogen. Furthermore, ligand occupancy of alphaIIbbeta3 initiates outside-in signaling and additional conformational changes of the receptor, leading to the exposure of extracellular neoepitopes termed ligand-induced binding sites (LIBS), which are recognized by anti-LIBS monoclonal antibodies. To date, the mechanism of bidirectional transmembrane signaling of alphaIIbbeta3 has not been established. In this study, using our newly developed anti-LIBScyt1 monoclonal antibody, we showed that extracellular ligand binding to alphaIIbbeta3 on blood platelets induces a transmembrane conformational change in alphaIIbbeta3, thereby exposing the LIBScyt1 epitope in the alphaIIb cytoplasmic sequence between Lys994 and Asp1003. In addition, a point mutation at this site (P998A/P999A) renders alphaIIbbeta3 constitutively active to bind extracellular ligands, resulting in fibrinogen-dependent cell-cell aggregation. Taken collectively, these results demonstrated that the extracellular ligand-binding site and a cytoplasmic LIBS epitope in integrin alphaIIbbeta3 are conformationally and functionally coupled. Such bidirectional modulation of alphaIIbbeta3 conformation across the cell membrane may play a key role in inside-out and outside-in signaling via this integrin.  相似文献   

6.
The molecular mechanisms involved in regulating the activation-dependent conformational switch in integrins are not known although recent evidence suggests that integrins are a direct target for redox modulation. We have identified an endogenous integrin thiol isomerase activity that may be responsible for regulating integrin activation states. The purpose of this study was to examine the effects of redox conditions elicited by nitric oxide and glutathione on the thiol isomerase activity of the platelet integrin alphaIIbbeta3 and also on the activation status of this integrin in intact platelets. The universal integrin activator, Mn2+, stimulates the thiol isomerase activity in purified alphaIIbbeta3. Kinetic analysis reveals that alphaIIbbeta3 is an allosteric enzyme which displays positive cooperativity in the presence of Mn2+ with an apparent Hill coefficient of 1.9. Also, addition of Mn2+ to platelets results solely in activation of the integrin as demonstrated by the binding of the antibody PAC-1. The addition of the nitric oxide donors SNP, SIN-1, and SNOAC in combination with glutathione can directly reverse the activation state of the platelet integrin induced by Mn2+. These compounds have no effect on platelet secretory responses indicating a direct effect on the integrin. In the presence of nitric oxide and glutathione, the enzymatic activity of alphaIIbbeta3 also displays positive cooperativity (apparent Hill coefficient of 1.9), and a significant increase in the saturability of the enzyme was observed. Thus, redox agents simultaneously modulate the thiol isomerase activity of purified alphaIIbbeta3 and its active conformation in intact platelets, suggesting a molecular mechanism for integrin regulation.  相似文献   

7.
The cytoadhesins represent a group of RGD receptors that belongs to the integrin superfamily of adhesion molecules. Members of this cytoadhesin family include the platelet GPIIb-IIIa and the vitronectin receptors. These glycoproteins share the same beta-subunit, which is associated with different alpha subunits to form an alpha/beta heterodimer. In the present study, we have analyzed the fine recognition specificy of the cytoadhesins from platelets and endothelial cells for the adhesive protein, fibrinogen. Two sets of synthetic peptides, RGDX peptides and peptides corresponding to the COOH terminus of the fibrinogen gamma chain, were compared for their structure-function relationships in the two cellular systems. The results indicate that: (a) both RGDX and gamma-chain peptides inhibit the binding of fibrinogen to platelets and endothelial cells; (b) a marked influence of the residue at the COOH- and NH2-terminal positions of each peptide set can be demonstrated on the two types; and (c) RGDX and gamma peptides have differential effects on platelets and endothelial cells with respect to fine structural requirements. These results clearly indicate that while the platelet and endothelial cytoadhesins may interact with similar peptidic sequences, they express a different fine structural recognition.  相似文献   

8.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

9.
The spatial relationship between the binding sites for two cyclic peptides, cyclo(S,S)KYGCRGDWPC (cRGD) and cyclo(S,S)KYGCHarGDWPC (cHarGD), high affinity analogs for the RGD and HLGGAKQAGDV peptide ligands, in integrin alphaIIbbeta3 (GPIIb-IIIa) has been characterized. For this purpose, cRGD and cHarGD were labeled with fluorescein isothiocyanate and tetramethylrhodamine 5-isothiocyanate, respectively. Both cyclic peptides were potent inhibitors of fibrinogen binding to alphaIIbbeta3, particularly in the presence of Mn2+; IC50 values for cRGD and cHarGD were 1 and <0.1 nM in the presence of Mn2+. Direct binding experiments and fluorescence resonance energy transfer analysis using the purified receptor showed that both peptides interacted simultaneously with distinct sites in alphaIIbbeta3. The distance between these sites was estimated to be 6.1 +/- 0.5 nm. Although cRGD bound preferentially to one site and cHarGD to the other, the sites were not fully specific, and each cyclic peptide or its linear counterpart could displace the other to some extent. The binding affinity of the cHarGD site was dramatically affected by Mn2+. cRGD, but not cHarGD, bound to recombinant beta3-(95-373) in a cation-dependent manner, indicating that the cRGD site is located entirely within this fragment. With intact platelets, binding of c-RGD and cHarGD to alphaIIbbeta3 resulted in distinct conformational alterations in the receptor as indicated by the differential exposure of ligand-induced binding site epitopes and also induced the opposite on membrane fluidity as shown by electron paramagnetic resonance analyses using 5-doxylstearic acid as a spin probe. These data support the concept the two peptide ligands bind to distinct sites in alphaIIbbeta3 and initiate different functional consequences within the receptor itself and within platelets.  相似文献   

10.
Integrin-associated protein (IAP/CD47) is a receptor for the C-terminal cell binding domain of thrombospondin (TS). A peptide from the C-terminal cell binding domain, KRFYVVMWKK (4N1K) binds to IAP and stimulates the integrin-dependent cell functions, including platelet aggregation. We investigated the mechanism by which TS-bound IAP modulates the affinity of platelet integrin, alphaIIbbeta3. Platelet aggregation induced by 4N1K was not completely inhibited by energy depletion with sodium azide and 2-deoxy-d-glucose, although ADP or collagen-induced platelet response was completely inhibited. The binding of ligand-mimetic antibody PAC1 to alphaIIbbeta3 was also induced in the energy-depleted platelets. In the transfected Namalwa cells, 4N1K induced activation of the alphaIIbbeta3 with mutated beta3 (Ser-752 to Pro), which is a non-responsive form to inside-out signaling, as well as wild type alphaIIbbeta3. The truncated form of IAP with only the extracellular immunoglobulin-like (Ig) domain was sufficient for the activation of alphaIIbbeta3 in Chinese hamster ovary cells, although the IAP-mediated intracellular signaling was abolished, which was monitored by the absence of down-regulation of mitogen-activated protein kinase phosphorylation. Furthermore, the soluble recombinant Ig domain of IAP induced PAC1 binding to alphaIIbbeta3 on Chinese hamster ovary cells when added with 4N1K. Physical association between the soluble recombinant Ig domain of IAP and purified alphaIIbbeta3 was detected in the presence of 4N1K. These data indicate that the extracellular Ig domain of IAP, when bound to TS, interacts with alphaIIbbeta3 and can change alphaIIbbeta3 in a high affinity state without the requirement of intracellular signaling. This extracellular event would be a novel mechanism of affinity modulation of integrin.  相似文献   

11.
The platelet integrin alphaIIbbeta3 is representative of a class of heterodimeric receptors that upon activation bind extracellular macromolecular ligands and form signaling clusters. This study examined how occupancy of alphaIIbbeta3's fibrinogen binding site affected the receptor's solution structure and stability. Eptifibatide, an integrin antagonist developed to treat cardiovascular disease, served as a high-affinity, monovalent model ligand with fibrinogen-like selectivity for alphaIIbbeta3. Eptifibatide binding promptly and reversibly perturbed the conformation of the alphaIIbbeta3 complex. Ligand-specific decreases in its diffusion and sedimentation coefficient were observed at near-stoichiometric eptifibatide concentrations, in contrast to the receptor-perturbing effects of RGD ligands that we previously observed only at a 70-fold molar excess. Eptifibatide promoted alphaIIbbeta3 dimerization 10-fold more effectively than less selective RGD ligands, as determined by sedimentation equilibrium. Eptifibatide-bound integrin receptors displayed an ectodomain separation and enhanced assembly of dimers and larger oligomers linked through their stalk regions, as seen by transmission electron microscopy. Ligation with eptifibatide protected alphaIIbbeta3 from SDS-induced subunit dissociation, an effect on electrophoretic mobility not seen with RGD ligands. Despite its distinct cleft, the open conformer resisted guanidine unfolding as effectively as the ligand-free integrin. Thus, we provide the first demonstration that binding a monovalent ligand to alphaIIbbeta3's extracellular fibrinogen-recognition site stabilizes the receptor's open conformation and enhances self-association through its distant transmembrane and/or cytoplasmic domains. By showing how eptifibatide and RGD peptides, ligands with distinct binding sites, each affects alphaIIbbeta3's conformation, our findings provide new mechanistic insights into ligand-linked integrin activation, clustering and signaling.  相似文献   

12.
Borrelia hermsii, a spirochaete responsible for relapsing fever in humans, grows to high density in the bloodstream and causes thrombocytopenia. We show here that B. hermsii binds to human platelets. Extended culture in bacteriological medium resulted in both diminished infectivity in vivo and diminished platelet binding in vitro. Platelet binding was promoted by the platelet integrin alphaIIbbeta3: the bacterium bound to purified integrin alphaIIbbeta3, and bacterial binding to platelets was diminished by alphaIIbbeta3 antagonists or by a genetic defect in this integrin. Integrin alphaIIbbeta3 undergoes a conformational change upon platelet activation, and bacteria bound more efficiently to activated rather than resting platelets. Nevertheless, B. hermsii bound at detectable levels to preparations of resting platelets. The bacterium did not recognize a point mutant of alphaIIbbeta3 that cannot acquire an active conformation. Rather, B. hermsii was capable of triggering platelet and integrin alphaIIbbeta3 activation, as indicated by the expression of the platelet activation marker P-selectin and integrin alphaIIbbeta3 in its active conformation. The degree of platelet activation varied depending upon bacterial strain and growth conditions. Prostacyclin I2, an inhibitor of platelet activation, diminished bacterial attachment, indicating that activation enhanced bacterial binding. Thus, B. hermsii signals the host cell to activate a critical receptor for the bacterium, thereby promoting high-level bacterial attachment.  相似文献   

13.
Integrins are transmembrane heterodimeric glycoproteins responsible for cellular communication; therefore, they play an essential role in many physiological events. Viper snake venoms contain integrin antagonists called disintegrins which bind and inhibit integrin function. They present a loop containing an RGD motif responsible for integrin binding. The engineering of disintegrins fused to a reporter enzyme will be an interesting approach to build integrin markers. Even more, the disintegrin scaffold could be used to present other protein binding motifs. In this work, we have obtained alkaline phosphatase (APv) tagged eristostatin (Er) by cloning and expressing eristostatin DNA into the pLIP6-GN vector. Eristostatin, a 49 residue disintegrin, binds selectively to alphaIIbbeta3 integrin, inhibiting its binding to fibrinogen. The resulting fusion protein Er/APv was identified by SDS-PAGE and by Western blotting using both anti-Er and anti-AP antibodies. This fusion protein showed enzymatic AP activity similar to that of wild APv and its potential use for an alphaIIbbeta3 integrin assay was tested in a one-step dot blot using immobilized cells incubated with the marker and developed by AP substrate. Er/APv showed selectivity towards platelets and alphaIIbbeta3 integrin transfected cells and reacted with the same region as unlabeled Er, as analyzed in competition assays. Our data present a novel tool, Er/APv, with potential use as molecular marker in processes where the alphaIIbbeta3 integrin is involved.  相似文献   

14.
Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin alphaIIbbeta3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in alphaIIbbeta3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with alphaIIbbeta3. However, fibrinogen binding caused Csk to dissociate from alphaIIbbeta3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with alphaIIbbeta3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to alphaIIbbeta3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.  相似文献   

15.
Outside-in integrin alphaIIbbeta3 signaling is required for normal platelet thrombus formation and is triggered by c-Src activation through an unknown mechanism. In this study, we demonstrate an essential role for protein-tyrosine phosphatase (PTP)-1B in this process. In resting platelets, c-Src forms a complex with alphaIIbbeta3 and Csk, which phosphorylates c-Src tyrosine 529 to maintain c-Src autoinhibition. Fibrinogen binding to alphaIIbbeta3 triggers PTP-1B recruitment to the alphaIIbbeta3-c-Src-Csk complex in a manner that is dependent on c-Src and specific tyrosine (tyrosine 152 and 153) and proline (proline 309 and 310) residues in PTP-1B. Studies of PTP-1B-deficient mouse platelets indicate that PTP-1B is required for fibrinogen-dependent Csk dissociation from alphaIIbbeta3, dephosphorylation of c-Src tyrosine 529, and c-Src activation. Furthermore, PTP-1B-deficient platelets are defective in outside-in alphaIIbbeta3 signaling in vitro as manifested by poor spreading on fibrinogen and decreased clot retraction, and they exhibit ineffective Ca2+ signaling and thrombus formation in vivo. Thus, PTP-1B is an essential positive regulator of the initiation of outside-in alphaIIbbeta3 signaling in platelets.  相似文献   

16.
The cyclic calcium release and uptake during calcium oscillation are thought to result from calcium-induced calcium release (CICR); however, it is unclear, especially in nonexcitable cells, how the initial calcium mobilization that triggers CICR occurs. We report here a novel mechanism, other than conventional calcium channels or the phopholipase C-inositol trisphosphate system, for initiating calcium oscillation downstream of integrin signaling. Upon integrin alphaIIbbeta3 binding to fibrinogen ligand or the disintegrin rhodostomin, sodium-proton exchanger NHE1 and sodium-calcium exchanger NCX1 are actively transported to the plasma membrane, and they become physically coupled to integrin alphaIIbbeta3. Lipid raft-dependent mechanisms modulate the membrane targeting and formation of the NHE1-integrin alphaIIbbeta3-NCX1 protein complex. NHE1 and NCX1 within such protein complex are functionally coupled, such that a local increase of sodium concentration caused by NHE1 can drive NCX1 to generate sodium efflux in exchange for calcium influx. The resulting calcium increase inside the cell can then trigger CICR as a prelude to calcium oscillation downstream of integrin alphaIIbbeta3 signaling. Fluorescence resonance energy transfer based on fluorescence lifetime measurements is employed here to monitor the intermolecular interactions among NHE1-integrin alphaIIbbeta3-NCX1, which could not be properly detected using conventional biochemical assays.  相似文献   

17.
The platelet integrin alphaIIbbeta3 exhibits bidirectional signaling, in that intracellular messengers enable adhesive macromolecules to bind to its ectodomain, while ligation promotes the association of cytoskeletal proteins with its cytoplasmic domains. In order to understand the linkage between these distant regions, we investigated the effects of receptor occupancy on the solution structure of both full-length recombinant alphaIIbbeta3 and alphaIIbDelta991beta3, an integrin truncation mutant which lacks one cytoplasmic domain. Lysates of (35)S-labeled human A549 cells expressing either full-length alphaIIbbeta3 or alphaIIbDelta991beta3 were examined by sucrose density gradient sedimentation followed by immunoprecipitation to determine the distributions of integrin protomers and oligomers. Recombinant alphaIIbbeta3 exhibited a weight-average sedimentation coefficient, S(w)=11.3+/-1.4 S with 73% sedimenting as protomers/dimers (9.1+/-1.0 S) and 27% as oligomers (15.4+/-0.4 S). Truncation mutant alphaIIbDelta991beta3 exhibited a similar pattern with 65% sedimenting as protomers/dimers. Upon ligation with eptifibatide, both full-length alphaIIbbeta3 and alphaIIbDelta991beta3 sedimented mainly at >14 S, indicating 2-3-fold increased oligomerization. Thus we have demonstrated that alphaIIb's cytoplasmic region is not required for integrin clustering, a key event in outside-in signaling.  相似文献   

18.
A transmembrane domain heterodimer, acting in concert with a membrane-proximal cytoplasmic domain clasp, is thought to maintain integrins in a low affinity state. To test whether helix-helix interactions between the alphaIIb and beta3 transmembrane domains regulate the activity of integrin alphaIIbbeta3, we synthesized a soluble peptide corresponding to the alphaIIb transmembrane domain, designated alphaIIb-TM, and we studied its ability to affect alphaIIbbeta3 activity in human platelets. alphaIIb-TM was alpha-helical in detergent micelles and phospholipid vesicles, readily inserted into membrane bilayers, bound to intact purified alphaIIbbeta3, and specifically associated with the transmembrane domain of alphaIIb, rather than the transmembrane domains of beta3, alpha2, and beta1, other integrin subunits present in platelets. When added to suspensions of gel-filtered platelets, alphaIIb-TM rapidly induced platelet aggregation that was not inhibited by preincubating platelets with the prostaglandin E(1) or the ADP scavenger apyrase but was prevented by the divalent cation chelator EDTA. Furthermore, alphaIIb-TM induced fibrinogen binding to platelets but not the binding of osteopontin, a specific ligand for platelet alphavbeta3. The peptide also induced fibrinogen binding to recombinant alphaIIbbeta3 expressed by Chinese hamster ovary cells, confirming that its effect was independent of platelet signal transduction. Finally, transmission electron microscopy of purified alphaIIbbeta3 revealed that alphaIIb-TM shifted the integrin from a closed configuration with its stalks touching to an open configuration with separated stalks. These observations demonstrate that transmembrane domain interactions regulate integrin function in situ and that it is possible to target intra-membranous protein-protein interactions in a way that can have functional consequences.  相似文献   

19.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

20.
The platelet integrin receptor alphaIIbbeta3 plays a critical role in thrombosis and haemostasis by mediating interactions between platelets and several ligands but primarily fibrinogen. It has been shown previously that the YMESRADR KLAEVGRVYLFL (313-332) sequence of the alphaIIb subunit plays an important role in platelet activation, fibrinogen binding and alphaIIbbeta3-mediated outside-in signalling. Furthermore, we recently showed that the 20-residue peptide (20-mer) alphaIIb 313-332, is a potent inhibitor of platelet aggregation and fibrinogen binding to alphaIIbbeta3, interacting with fibrinogen rather than the receptor. In an effort to determine the sequence and the minimum length required for the biological activity of the above 20-mer, we synthesized seven octapeptides, each overlapping by six residues, covering the entire sequence and studied their effect on platelet activation as well as fibrinogen binding to activated platelets. We show for the first time that octapeptides containing the RAD sequence are capable of inhibiting platelet aggregation and secretion as well as fibrinogen binding to the activated alphaIIbbeta3, possibly interacting with the ligand rather than the receptor. This suggests that the RAD sequence, common to all the inhibitory peptides, is critical for their biological activity. However, the presence of the YMES sequence, adjacent to RAD, significantly increases the peptide's biological potency. The development of such inhibitors derived from the 313-332 region of the alphaIIb subunit may be advantageous against the RGD-like antagonists as they could inhibit platelet activation without interacting with alphaIIbbeta3, thus failing to further induce alphaIIbbeta3-mediated outside-in signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号