首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been suggested that mixed-chain phosphatidylcholines with normalized chain length differences (deltaC/CL) in the range of 0.10-0.40 undergo spontaneous self-assembly in excess water at T less than Tm into the partially interdigitated bilayer and those with delta C/CL values in the range of 0.44-0.57 form, in excess water, mixed interdigitated bilayers at T less than Tm. The mixing behavior of binary mixtures of C(22):C(12)PC/C(17):C(17)PC, C(22):C(12)/C(15):C(19)PC, and C(15):C(19)PC/C(13):C(21)PC reported in this work is used to support this view. The values of delta C/CL for C(17):C(17)PC, C(15):C(19)PC, C(13):C(21)PC, and C(22):C(12)PC are 0.10, 0.15, 0.35, and 0.55, respectively. The binary mixture of C(15):C(19)PC/C(13):C(21)PC exhibits a lens-shaped phase diagram, indicating that these two identical molecular weight (MW) lipids with delta C/CL values less than 0.4 are completely miscible over the entire compositional range in both gel and liquid-crystalline phases. In contrast, the phase diagrams of C(22):C(12)PC/C(17):C(17)PC and C(22):C(12)PC/C(15):C(19)PC are eutectic, indicating immiscibility of the component lipids over a wide compositional range in the gel phase. This immiscibility of identical MW lipids in the bilayer plane can be attributed to the different packing properties of the component lipids in the bilayer at T less than Tm.  相似文献   

2.
Thermotropic properties of saturated mixed acyl phosphatidylethanolamines   总被引:2,自引:0,他引:2  
The mixed acyl phosphatidylethanolamine (PE) series C(18)C(18)PE, C(18)C(16)PE, C(18)C(14)PE, C(18)C(12)PE, and C(18)C(10)PE has been prepared from the corresponding phosphatidylcholines by phospholipase D mediated transphosphatidylation. The thermotropic behavior of unhydrated and hydrated preparations of these PEs has been investigated by differential scanning calorimetry and 31P NMR spectroscopy. Unhydrated preparations of the PEs undergo crystalline to liquid-crystalline transitions (Tm+h), which correspond to the simultaneous hydration and acyl chain melting of poorly hydrated crystalline samples. Hydrated preparations of the PEs undergo gel to liquid-crystalline transitions (Tm) when scanned immediately subsequent to cooling from temperatures above their respective Tm+hs. Multilamellar bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE pack without significant interdigitation of the phospholipid acyl chains across the bilayer center in the gel phase. C(18)C(10)PE multilamellar preparations exhibit a mixed-interdigitated gel phase packing of the phospholipid acyl chains. Hydrated bilayers of C(18)C(12)PE adopt a mixed-interdigitated gel phase packing at temperatures below 13.9 degrees C. Between 13.9 degrees C and the gel to liquid-crystalline transition temperature of 36.9 degrees C, the C(18)C(12)PE bilayer adopts a noninterdigitated gel phase packing. The metastable behavior of fully hydrated and partially hydrated preparations of the mixed acyl PEs has been investigated. Bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE exhibited little or no tendency toward regeneration of the crystalline phase. In contrast, bilayers of C(18C(12)PE and C(18)C(10)PE exhibited a metastability of the liquid-crystalline phase in the temperature interval between Tm and Tm+h, which can allow for the regeneration of the crystalline phase under certain conditions.Bilayers of C(18)C(12)PE exhibited an additional metastability of the noninterdigitated gel phase.  相似文献   

3.
Higher water use efficiency (WUE) in C(4) plants may allow for greater xylem safety because transpiration rates are reduced. To evaluate this hypothesis, stem hydraulics and anatomy were compared in 16 C(3), C(3)-C(4) intermediate, C(4)-like and C(4) species in the genus Flaveria. The C(3) species had the highest leaf-specific conductivity (K(L)) compared with intermediate and C(4) species, with the perennial C(4) and C(4)-like species having the lowest K(L) values. Xylem-specific conductivity (K(S)) was generally highest in the C(3) species and lower in intermediate and C(4) species. Xylem vessels were shorter, narrower and more frequent in C(3)-C(4) intermediate, C(4)-like and C(4) species compared with C(3) species. WUE values were approximately double in the C(4)-like and C(4) species relative to the C(3)-C(4) and C(3) species. C(4)-like photosynthesis arose independently at least twice in Flaveria, and the trends in WUE and K(L) were consistent in both lineages. These correlated changes in WUE and K(L) indicate WUE increase promoted K(L) decline during C(4) evolution; however, any involvement of WUE comes late in the evolutionary sequence. C(3)-C(4) species exhibited reduced K(L) but little change in WUE compared to C(3) species, indicating that some reduction in hydraulic efficiency preceded increases in WUE.  相似文献   

4.
J T Mason 《Biochemistry》1988,27(12):4421-4429
The mixing behavior of symmetric chain length and mixed chain length phosphatidylcholines in two-component multilamellar bilayers has been investigated by high-sensitivity differential scanning calorimetry. Phase diagrams have been constructed for two-component bilayers composed of C(18)C(18)PC and either C(18)C(16)PC, C(18)C(14)PC, C(18)C(12)PC, or C(18)C(10)PC. It is found that C(18)C(18)PC-C(18)C(16)PC and C(18)C(18)PC-C(18)C(14)PC mixed bilayers exhibit complete miscibility of the components in both the gel and liquid-crystalline phases. Whereas this mixing is observed to be nearly ideal for the C(18)C(18)PC-C(18)C(16)PC binary system, the intermixing of the lipids is highly nonideal in the gel phase of the C(18)C(18)PC-C(18)C(14)PC binary mixture. The C(18)C(18)PC-C(18)C(12)PC and C(18)C(18)PC-C(18)C(10)PC mixed bilayers are characterized by partial immiscibility of the phosphatidylcholine components in the bilayer gel phase. Over a large compositional range, these bilayers appear to consist of phase-separated regions of interdigitated and noninterdigitated gel phases. In addition, the C(18)C(18)PC-C(18)C(10)PC two-component bilayer displays a limited region of liquid-liquid immiscibility in the liquid-crystalline bilayer phase. The phase separation of the mixed chain length phosphatidylcholines revealed in these mixed bilayers may represent a three-dimensional phase separation of the lipid components where the phosphatidylcholines are both laterally separated within the plane of the bilayer and conformationally coupled across the bilayer. Such phase-separated domains could have profound effects on membrane structure and function if they were to occur in biological membranes.  相似文献   

5.
H N Lin  Z Q Wang  C H Huang 《Biochemistry》1990,29(30):7063-7072
To examine the thermotropic phase behavior of various mixed-chain phosphatidylcholines in excess water and to compare it with the known behavior of identical-chain phosphatidylcholines, we have carried out high-resolution differential scanning calorimetric (DSC) studies on aqueous dispersions of 10 different mixed-chain phosphatidylcholines. These lipids, C(16):C(18)PC, C(18):C(16)PC, C(15):C(19)PC, C(19):C(15)PC, C(14):C(20)PC, C(20):C(14)PC, C(13):C(21)PC, C(21):C(13)PC, C(12):C(22)PC, and C(22):C(12)PC, have a common molecular weight which is the same as that of C(17):C(17)PC, an identical-chain phosphatidylcholine with a molecular weight of 762.2. When the values of any of the thermodynamic parameters (Tm, delta H, and delta S) of the mixed-chain phosphatidylcholines and C(17):C(17)PC are plotted against the normalized chain-length difference (delta C/CL), a linear function with negative slope is obtained provided that the value of delta C/CL is within the range of 0.09-0.4. The linear relationship suggests that these mixed-chain phospholipids are packed in the gel-state bilayer similar to the bilayer structure of C(17):C(17)PC at T less than Tm; however, the negative slope suggests that the conformational statistics of the hydrocarbon chain and the lateral lipid-lipid interactions of these phosphatidylcholines in the gel-state bilayer are perturbed proportionally by a progressive increase in the chain-length inequivalence between the two acyl chains within each lipid molecule. When the value of delta C/CL for mixed-chain phosphatidylcholines reaches the range of 0.44-0.55, the thermotropic phase behavior deviates markedly from that of less asymmetric phosphatidylcholines, suggesting that these highly asymmetric lipids are packed into mixed interdigitated bilayers at T less than Tm. The heating and cooling pathways of aqueous dispersions prepared from the 10 mixed-chain phospholipids are also discussed.  相似文献   

6.
Removal of the plant hormone ethylene (C(2)H(4)) is often required by horticultural storage facilities, which are operated at temperatures below 10 degrees C. The aim of this study was to demonstrate an efficient, biological C(2)H(4) removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C(2)H(4), was packed in a biofilter (687 cm(3)) and subjected to an airflow ( approximately 73 ml min(-1)) with 2 ppm (microl liter(-1)) C(2)H(4). The C(2)H(4) removal efficiencies achieved at 20, 10, and 5 degrees C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C(2)H(4) levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2 degrees C, the average C(2)H(4) removal efficiency dropped to 83%. The detailed temperature response of C(2)H(4) removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29 degrees C with increments of 1 degrees C. The C(2)H(4) removal rate was highest at 26 degrees C (0.85 microg of C(2)H(4) g [dry weight](-1) h(-1)), but remained at levels of 0.14 to 0.28 microg of C(2)H(4) g (dry weight)(-1) h(-1) at 0 to 10 degrees C. At 35 to 40 degrees C, the C(2)H(4) removal rate was negligible (0.02 to 0.06 microg of C(2)H(4) g [dry weight](-1) h(-1)). The Q(10) (i.e., the ratio of rates 10 degrees C apart) for C(2)H(4) removal was 1.9 for the interval 0 to 10 degrees C. In conclusion, the present results demonstrated microbial C(2)H(4) removal, which proceeded at 0 to 2 degrees C and produced a moderately psychrophilic temperature response.  相似文献   

7.
The species richness of C(4) grasses is strongly correlated with temperature, with C(4) species dominating subtropical ecosystems and C(3) types predominating in cooler climates. Here, the effects of low temperatures on C(4) and C(3) grasses are compared, controlling for phylogenetic effects by using Alloteropsis semialata, a unique species with C(4) and C(3) subspecies. Controlled environment and common garden experiments tested the hypotheses that: (i) photosynthesis and growth are greater in the C(4) than the C(3) subspecies at high temperatures, but this advantage is reversed below 20 degrees C; and (ii) chilling-induced photoinhibition and light-mediated freezing injury of leaves occur at higher temperature thresholds in the C(4) than the C(3) plants. Measurements of leaf growth and photosynthesis showed the expected advantages of the C(4) pathway over the C(3) type at high temperatures. These declined with temperature, but were not completely lost until 15 degrees C, and there was no evidence of a reversal to give a C(3) advantage. Chronic chilling (5-15 degrees C) or acute freezing events induced a comparable degree of photodamage in illuminated leaves of both subspecies. Similarly, freezing caused high rates of mortality in the unhardened leaves of both subtypes. However, a 2-week chilling treatment prior to these freezing events halved injury in the C(3) but not the C(4) subspecies, suggesting that C(4) leaves lacked the capacity for cold acclimation. These results therefore suggest that C(3) members of this subtropical species may gain an advantage over their C(4) counterparts at low temperatures via protection from freezing injury rather than higher photosynthetic rates.  相似文献   

8.
S Ali  H N Lin  R Bittman  C H Huang 《Biochemistry》1989,28(2):522-528
High-resolution differential scanning calorimetry (DSC) has been used to study the aqueous dispersions of mixed-chain phosphatidylcholines prepared from colyophilized mixtures of C(18):C(11:1 delta 10) PC/C(18):C(10)PC and C(18):C(11:1 delta 10) PC/C(18):C(11)PC of various molar ratios. These mixed-chain phospholipids are characterized by a marked disparity in their acyl-chain lengths; however, the sn-1 acyl chain in the fully extended conformation is about twice as long as the sn-2 acyl chain. Their thermotropic behavior was determined, and the phase diagrams of these two mixtures were constructed from the calorimetric data. Results indicate that C(18):C(11:1 delta 10)PC/C(18):C(10)PC and C(18):C-(11:1 delta 10)PC/C(18):C(11)PC are miscible in all proportions with a near-ideal behavior of mixing in the gel and liquid-crystalline phases. Equimolar mixtures of diC(14)PC/C(18):C(11:1 delta 10)PC, diC(14)PC/C(18):C(10)PC, and diC(14)PC/C(18):C(11)PC have also been studied by DSC. These phosphatidylcholines in the 1:1 mixture differ in Tm by less than 11 degrees C; however, they exhibit gel-phase immiscibility in the plane of the bilayer. Taken together, these studies suggest that C(18):C(11)PC and C(18):C(11:1 delta 10)PC are packed similarly to C(18):C(10)PC in excess water as mixed interdigitated bilayers, at T less than Tm, which transform into partially interdigitated bilayers when heated above Tm.  相似文献   

9.
The expression of three antigenic subsets of C3--the C3(S), the C3(N), and the C3(D) antigens--by soluble and target-bound forms of C3 was studied. The C3(S) subset is stable and is expressed by native as well as denatured C3 (exposure to sodium dodecyl sulphate (SDS) M greater than or equal to 10(-3)). The C3(N) and C3(D) subsets are labile and are expressed by native and denatured C3, respectively. Antisera to native C3, anti-C3(S-N), react with the C3(S) as well as the C3(N) subset. Antisera to isolated C3 subunits react exclusively with the C3(D) subset. A separation of anti-C3(S) and anti-C3(N) antibodies was accomplished by adsorbing the anti-C3(S-N) antiserum with insolubilized, denatured C3, anti-C3(N) antibodies remained unadsorbed. Anti-C3(S) antibodies were adsorbed and subsequently eluted from the denatured C3. Agglutination studies with EAC1423b cells showed significant agglutination with anti-C3(S) and anti-C3(D) antisera but reduced agglutination with anti-C3(N) antisera. Agglutination by anti-C3(D) antisera was unaffected in the presence of EDTA serum containing converted or unconverted C3. These data suggest an antigenic modification of C3b-b' upon binding that mirrors the antigenic transition associated with SDS denaturation of C3.  相似文献   

10.
H Xu  C H Huang 《Biochemistry》1987,26(4):1036-1043
The asymmetric C(18):C(10)PC molecules are known by X-ray diffraction to self-assemble, in excess water, into a lamellar structure known as the mixed interdigitated bilayer at T less than Tm. In this structure, the long C(18)-acyl chain is interdigitated fully across the entire hydrocarbon width of the bilayer, while the shorter C(10)-acyl chain, which is about half as long as the C(18)-acyl chain, packs end to end with a C(10)-acyl chain of another lipid molecule in the opposing bilayer leaflet. We have synthesized the following asymmetric phosphatidylcholines (PC's): C(16):C(9)PC, C(16):C(10)PC, C(18):C(10)PC, C(18):C(11)PC, C(20):C(11)PC, C(20):C(12)PC, C(22):C(12)PC, C(22):C(13)PC, C(8):C(18)PC, and C(10):C(22)PC. These 10 asymmetric phosphatidylcholines have a common characteristic; i.e., the length of the longer extended acyl chain is about twice as long as that of the shorter acyl chain. On the basis of the known lamellar structure of C(18):C(10)PC, we anticipate that these asymmetric phosphatidylcholines will also form mixed interdigitated bilayers. We have employed high-resolution differential scanning calorimetry (DSC) to investigate the thermotropic behavior of liposomes prepared from these asymmetric phosphatidylcholines. If our anticipation is correct, one would find that the thermodynamic data (Tm, delta H, or delta S) associated with the main thermal phase transitions of these asymmetric phosphatidylcholine dispersions will fit into a continuous curve as they are plotted as a function of the hydrocarbon width of the putative mixed interdigitated bilayer. Experimental data presented in this paper indeed bear this out. For comparison, a DSC study of multilamellar dispersions prepared from a series of saturated symmetric phosphatidylcholines has also been carried out.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

12.
To confirm that the cytochrome bc(1) complex exists as a dimer with intertwining Rieske iron-sulfur proteins in solution, four Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes containing two pairs of cysteine substitutions, one in the interface between the head domain of iron-sulfur protein (ISP) and cytochrome b and the other between the tail domain of ISP and cytochrome b, were generated and characterized. They are: K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb), K70C(ISP)/A185C(cytb).P33C(ISP)/M92C (cytb), K70C (ISP)/A185C(cytb).L34C(ISP)/V64C(cytb), and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb). The K70C(ISP)/A185C(cytb) cysteine pair cross-links the head domain of ISP and cytochrome b; the P33C(ISP)/G89C(cytb), P33C(ISP)/M92C (cytb), L34C(ISP)/V64C(cytb), and N36C(ISP)/G89C(cytb) cysteine pairs cross-link the tail domain of ISP and cytochrome b. An adduct protein with an apparent molecular mass of 128 kDa containing two cytochrome b and two ISP proteins is detected in the K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb) and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb) mutant complexes, confirming that the bc(1) complex exists as a dimer with intertwining ISPs. The loss of activity in these two double-cysteine-pair mutant complexes was attributed to the disulfide bond between the head domain of ISP and cytochrome b and not the one between the tail domain of ISP and cytochrome b.  相似文献   

13.
Pham CL  Hatters DM  Lawrence LJ  Howlett GJ 《Biochemistry》2002,41(48):14313-14322
We have investigated the effect of disulfide cross-linking on amyloid formation by human apolipoprotein (apo) C-II. Three derivatives of apoC-II were generated by inserting a cysteine residue on either the N-terminus (C(N)-apoC-II), C-terminus (C(C)-apoC-II), or both termini (C(N)C(C)-apoC-II). Under reducing conditions, all derivatives formed amyloid with a fibrous ribbon morphology similar to that of wild-type apoC-II. Under oxidizing conditions, C(N)- and C(N)C(C)-apoC-II formed a highly tangled network of fibrils, suggesting that the addition of an N-terminal cysteine to apoC-II promotes interfibril disulfide cross-links. Fibrils formed by C(C)-apoC-II under oxidizing conditions were closely packed but less tangled than fibrils formed by the C(N) and C(N)C(C) derivatives. The frequency of closed ring structures was more than doubled for C(C)-apoC-II compared to wild-type apoC-II. The kinetics of fibril formation by all cysteine derivatives was markedly enhanced under oxidizing conditions, suggesting that disulfide cross-linking promotes amyloid formation. Substoichiometric levels of preformed C(N)- and C(C)-apoC-II dimers accelerate amyloid formation by wild-type apoC-II. These data suggest that the N- and C-termini of apoC-II are close together in the amyloid fibril such that covalent cross-linking of either the N or C end of apoC-II promotes nucleation and the "seeding" of fibril growth.  相似文献   

14.
The aim of the present work was to determine and compare the degradation of acetate in a Chinese rice field soil at 25°C and 50°C, respectively, and to identify specifically the active organisms involved in syntrophic acetate oxidation. Soil was preincubated anaerobically for 30 days to reduce alternative electron acceptors other than CO(2). The [2-(13)C] acetate (99% (13)C) was added twice: 0 day and 19 days after preincubation. Addition of [2-(13)C] acetate resulted in an immediate increase of (13)C labeled CH(4) but non-labeling of CO(2) at 25°C. The methanogen community was dominated by Methanosarcinaceae and Methanocellales at 25°C. In contrast, the addition of [2-(13)C] acetate at 50°C resulted in a rapid increase of (13)CO(2). The (13)C labeling of CH(4) gradually increased and reached a similar value to CO(2) (13% (13)C) at the end of incubation (40 days). Nearly all archaeal 16S rRNA genes detected at 50°C belonged to hydrogenotrophic Methanocellales. DNA-based stable isotope probing analysis revealed that the organisms related to Thermacetogenium lineage and the unclassified Thermoanaerobacteraceae group were intensively labeled with (13)C in the incubations at 50°C. Thus, acetate was converted to CH(4) and CO(2) through aceticlastic methanogenesis at 25°C, while syntrophic acetate oxidation occurred at 50°C.  相似文献   

15.
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.  相似文献   

16.
Aphid-pathogenic fungus, Pandora neoaphidis, grown on broomcorn millet possesses greater sporulation capacity (C(s)) than aphid cadavers. The most sporulating cultures (32.0x10(4) spores millet(-1) grain) with water content (C(w)) of 48.7% were prepared by incubation at 20 degrees C for 15 days and used to study the effect of temperature and humidity on C(s) during long-term storage. Cultures were sealed with paper to retain ambient humidity, with parafilm for saturated humidity, or kept in 85% and 98% RH chambers. The C(w) and C(s) were monitored during 200-day storage at 5-20 degrees C. The paper-sealed cultures at 5 degrees C, associated with 21-25% of C(w), were best preserved and their 120-day C(s) was similar to that of the fresh cadavers. Consistently or variably high RH at 5 degrees C resulted in significantly higher C(w) and lower C(s) despite longer viability. The regimes at 10 degrees C preserved the cultures for 40 days. The observations fit well to the logistic model C(s)=35.28/{1+exp[-2.36+(-0.003C(w)+0.001C(w)T)t]} (r(2)=0.95) for all regimes of temperature (T) or C(s)=35.55/[1+exp(-2.33+0.001C(w)t)] (r(2)=0.93) at 5 degrees C only. The rate of decline of C(s) of -0.003C(w)+0.001C(w)T or 0.001 C(w) over days (t) highlights the primary effect of C(w). The daily C(s)-decline rates obtained for the best-stored cultures and air-dried cadavers stored at 5 degrees C were surprisingly identical. The results suggest a possible cheap method for preparing and storing large quantities of P. neoaphiodis inocula.  相似文献   

17.
Plumb ME  Sodetz JM 《Biochemistry》2000,39(42):13078-13083
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex, or MAC. It is an oligomeric protein composed of three subunits (C8alpha, C8beta, C8gamma) that are products of different genes. In C8 from serum, these are arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. In this study, the site on C8alpha that mediates intracellular binding of C8gamma to form C8alpha-gamma was identified. From a comparative analysis of indels (insertions/deletions) in C8alpha and its structural homologues C8beta, C6, C7, and C9, it was determined that C8alpha contains a unique insertion (residues 159-175), which includes Cys(164) that forms the disulfide bond to C8gamma. Incorporation of this sequence into C8beta and coexpression of the resulting construct (iC8beta) with C8gamma produced iC8beta-gamma, an atypical disulfide-linked dimer. In related experiments, C8gamma was shown to bind noncovalently to mutant forms of C8alpha and iC8beta in which Cys(164)-->Gly(164) substitutions were made. In addition, C8gamma bound specifically to an immobilized synthetic peptide containing the mutant indel sequence. Together, these results indicate (a) intracellular binding of C8gamma to C8alpha is mediated principally by residues contained within the C8alpha indel, (b) binding is not strictly dependent on Cys(164), and (c) C8gamma must contain a complementary binding site for the C8alpha indel.  相似文献   

18.
The four O-H bands of ascorbic acid could be assigned by means of infrared investigations. It could be shown by electron spin resonance and nuclear magnetic resonance measurements that the radical sodium ascorbate is formed by a cyclic side-chain structure resulting in a loss of C(6)-OH and C(3)-OH. The C(2) = C(3) double bond is still maintained as could be shown by infrared and ultraviolet absorption spectroscopy. In the case of complete oxidation of ascorbic acid to dehydroascorbic acid, C(6)-OH is reestablished (indicating the reopening of the furanoid ring), while C(2)-OH as well as the C(2) = C(3) double bond have disappeared due to the deprotonation of C(2)-OH and C(3)-OH. In the case of isoascorbic acid and its radical potassium isoascorbate similar results are obtained with one distinct difference: in the case of isoascorbic acid, C(2)-OH does not appear while C(3)-OH exhibits a shoulder.  相似文献   

19.
Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an S(C1)- or an S(C2)-haplotype. S(C1)S(C1) and S(C2)S(C2) homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S(1)S(1) through S(40)S(40)) generated from plants identified from three mixed populations, including U83. The S(C1)S(C1) homozygote was reciprocally compatible with all the genotypes examined. The S(C2)S(C2) homozygote accepted pollen from all but the S(17)S(17) homozygote (identified from the U1 population), but the S(17)S(17) homozygote accepted pollen from the S(C2)S(C2) homozygote. cDNAs encoding S(C2)- and S(17)-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying S(C1) or S(C2) showed that the SI behavior of S(C1) and S(C2) was identical to that of S(C1) and S(C2) homozygotes, respectively. All these results taken together suggested that the S(C2)-haplotype was a mutant form of the S(17)-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed.  相似文献   

20.
An audit of 'equivocal' (C3) and 'suspicious' (C4) categories in fine needle aspiration cytology of the breast
We have audited the frequency of use and outcome of the 'equivocal/atypia probably benign' (C3) and 'suspicious of malignancy' (C4) category for breast cytology in our Unit. A total of 14 935 cytological specimens were reported by at least one of the three pathologists with a special interest in breast pathology, according to five categories of the NHSBSP guidelines for cytology reporting, 1992; 3.7% (555 cases) and 3.9% (587 cases) of cases were classified as equivocal (C3) and suspicious (C4), respectively, giving a total rate (C3 + C4) of 7.6%. Of the C3 cases, 68% were subsequently benign and 32% were malignant. Of the C4 cases, 19% were subsequently benign and 81% malignant. The commonest benign lesions in both categories were fibroadenomas (7.6% of C3 and 19.8% of C4), fibrocystic change (14.3% of C3 and 12.5% of C4), radial scars (6.2% of C3 and 10.4% of C4) and papillomas (6.2% of C3 and 6.3% of C4). Of the malignant lesions (particularly those classified as C3), a high proportion were low grade or special type cancers. The categories of atypia probably benign (C3) and suspicious of malignancy (C4) in breast cytology provide a strategy for classification of problematic or uncertain cases; this maintains the predictive value of the benign (C2) and malignant (C5) categories, and allows separation of these difficult cases into clinically useful groups with differing probabilities of malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号