首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prototype of an amperometric glucose biosensor was realized by thermal inkjet printing using biological and electronic water-based inks, containing a glucose oxidase (GOD) from Aspergillus niger and the conducting polymer blend poly(3,4-ethylenedioxythiophene/polystyrene sulfonic acid) (PEDOT/PSS), respectively. The biosensor was fabricated microdepositing PEDOT/PSS and GOD, in sequence, on ITO-glass, by a commercial inkjet printer, with the help of a commercial software. High density microdots matrices were so-realized, with a calculated resolution of about 221 x 221 dpi (dot per inch). By means of a rapid and easy assay it was demonstrated that no activity loss occurred upon the printing of GOD, despite of the use of a thermal printhead. The device was encapsulated in a semipermeable membrane of cellulose acetate, applied by dip-coating, in order to prevent dissolution of the enzyme and/or PEDOT/PSS in water. The preliminary response of the electrode was measured in an aqueous glucose solution in the presence of ferrocenemethanol (FeMeOH) as a mediator, and resulted linear up to 60 mM in glucose. The best sensitivity value achieved was 6.43 microAM(-1) cm(-2) (447 nAM(-1) U(-1) cm(-2)). The characteristics of the device, and the possible performance improvements have been analyzed and discussed. The reported findings indicate that inkjet printing could be a viable instrument for the easy construction of a working biosensor via direct digital design using biological and conductive polymer based inks. Such an approach may be seen as an example of "biopolytronics".  相似文献   

2.
Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm?1) PEDOT:PSS layer, deposited by a stamp‐transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO‐free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO‐based solar cells. The high fill factor (65%) and the unaffected open‐circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.  相似文献   

3.
A large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte. Herein, we present the use of in situ resonance Raman spectroscopy to probe subtle molecular structural changes of PEDOT:PSS associated with its doping level. We demonstrate how such doping level changes of PEDOT:PSS can be used, for the first time, on operational OECTs for sensitive and selective metabolite sensing while simultaneously performing amperometric detection of the analyte. We test the sensitivity by molecularly sensing a lowest glucose concentration of 0.02 mM in phosphate-buffered saline solution. By changing the electrolyte to cell culture media, the selectivity of in situ resonance Raman spectroscopy is emphasized as it remains unaffected by other electroactive components in the electrolyte. The application of this molecular structural probe highlights the importance of developing biosensing probes that benefit from high sensitivity of the material's structural and electrical properties while being complimentary with the electronic methods of detection.  相似文献   

4.
Properties of hole transporting layers (HTLs) and back electrode are very critical to the stability of inverted bulk heterojunction organic photovoltaic (OPV) modules. Here, various deposition methods for back electrodes and materials of HTLs are examined by applying to inverted organic solar cells with a structure of indium tin oxide/ZnO/photoactive layer/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Ag. The experiment is performed on encapsulated modules with flexible barrier films under accelerated conditions. The OPV modules with screen‐printed Ag electrodes are shown to be electrically unstable with a reduction of the current density under damp heat condition at 85 °C/85% RH. Optical images for the active layer/PEDOT:PSS interface reveal that a reaction between the solvent from the Ag electrode and the underlying layers is the major cause for the degradation. In comparison with materials of the HTLs, the PEDOT:PSS layer shows low stability compared to the MoO3 layer under the accelerated conditions. Unusual chemical changes in the PEDOT:PSS film are observed through X‐ray photoelectron spectroscopy and this is further addressed by correlating the stability of the OPV devices.  相似文献   

5.
Transparent top electrodes for solid‐state dye‐sensitized solar cells (ssDSCs) allow for fabrication of mechanically stacked ssDSC tandems, partially transparent ssDSCs for building integration, and ssDSCs on metal foil substrates. A solution‐processed, highly transparent, conductive electrode based on PEDOT:PSS [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)] and spray‐deposited silver nanowires (Ag NWs) is developed as an effective top contact for ssDSCs. The electrode is solution‐deposited using conditions and solvents that do not damage or dissolve the underlying ssDSC and achieves high performance: a peak transmittance of nearly 93% at a sheet resistance of 18 Ω/square – all without any annealing that would harm the ssDSC. The role of the PEDOT:PSS in the electrode is twofold: it ensures ohmic contact between the ssDSC 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)9,9′‐spirobifluorene (Spiro‐OMeTAD) overlayer and the silver nanowires and it decreases the series resistance of the device. Semitransparent ssDSCs with D35 dye fabricated using this Ag NW/PEDOT:PSS transparent electrode show power conversion efficiencies of 3.6%, nearly as high as a reference device using an evaporated silver electrode (3.7%). In addition, the semitransparent ssDSC shows high transmission between 700–1100 nm, a necessity for use in efficient tandem devices. Such an electrode, in combination with efficient ssDSCs or hybrid perovskite‐sensitized solar cells, can allow for the fabrication of efficient, cost‐effective tandem photovoltaics.  相似文献   

6.
Organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) with different gate electrodes, including graphite, Au and Pt electrode, etc., have been used as dopamine sensor for the first time. The sensitivity of the OECT to dopamine depends on its gate electrode and operation voltage. We find that the device with a Pt gate electrode characterized at the gate voltage of 0.6 V shows the highest sensitivity. The detection limit of the device to dopamine is lower than 5 nM, which is one order of magnitude better than a conventional electrochemical measurement with the same Pt electrode. It is expected that OECT is a good candidate for low cost and highly sensitive biosensor for the detection of dopamine.  相似文献   

7.
The novel putrescine oxidase based amperometric biosensor selectively measures putrescine, which can be considered as an indicator of microbial spoilage. Putrescine oxidase (PUOX, EC 1.4.3.10) was isolated from Kocuria rosea (Micrococcus rubens) by an improved and simplified purification process. Cells were grown on brain heart infusion medium supplemented with putrescine. Cell-free extract was prepared in Tris buffer (pH 8.0) by Bead-beater. A newly elaborated step based on three-phase partitioning (TPP) was applied in the purification protocol of PUOX. The purified enzyme was immobilized on the surface of a spectroscopic graphite electrode in redox hydrogel with horseradish peroxidase, Os mediator and poly(ethylene glycol) (400) diglycidyl ether (PEGDGE) as crosslinking agent. This modified working electrode was used in wall-jet type amperometric cell together with the Ag/AgCl (0.1M KCl) reference electrode and a platinum wire as auxiliary electrode in flow injection analysis system (FIA). Hydrogel composition, pH and potential dependence were studied. Optimal working conditions were 0.45mLmin(-1) flow rate of phosphate buffer (66mM, pH 8.0) and +50mV polarizing potential vs. Ag/AgCl. The linear measuring range of the method was 0.01-0.25mM putrescine, while the detection limit was 5μM. Beer samples were investigated by the putrescine biosensor and the results were compared by those of HPLC reference method.  相似文献   

8.

Background

An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis.

Methods

The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow.

Results

All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation.

Conclusions

The application of PEDOT polymers has evolved as a new perspective to advance stents.

General significance

In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

9.
A solution‐processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3‐PEDOT:PSS). This MoO3‐PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐diyl‐alt‐thiophene‐2,5‐diyl] (TQ1):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) blends using MoO3‐PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS‐based device. More importantly, the device with MoO3‐PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3‐PEDOT:PSS implies the potential for low‐cost roll‐to‐roll fabrication of high‐efficiency polymer solar cells with long‐term stability at ambient conditions.  相似文献   

10.
Thermoelectric (TE) materials are important for the sustainable development because they enable the direct harvesting of low‐quality heat into electricity. Among them, conducting polymers have attracted great attention arising from their advantages, such as flexibility, nontoxicity, easy availability, and intrinsically low thermal conductivity. In this work, a novel and facile method is reported to significantly enhance the TE property of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films through sequential post‐treatments with common acids and bases. Compared with the as‐prepared PEDOT:PSS, both the Seebeck coefficients and electrical conductivities can be remarkably enhanced after the treatments. The oxidation level, which significantly impacts the TE property of the PEDOT:PSS films, can also be well tuned by controlling the experimental conditions during the base treatment. The optimal PEDOT:PSS films can have a Seebeck coefficient of 39.2 µV K?1 and a conductivity of 2170 S cm?1 at room temperature, and the corresponding power factor is 334 µW (m?1 K?2). The enhancement in the TE properties is attributed to the synergetic effect of high charge mobility by the acid treatment and the optimal oxidation level tuned by the base treatment.  相似文献   

11.
Window‐ or building‐integrated semi‐transparent solar cells are particularly interesting applications for organic photovoltaic devices. In this work, we present an easy‐to‐process inverted device architecture comprising fully solution processable poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) bilayer top‐electrodes for efficient semi‐transparent organic solar cells. By incorporating dyes with a complementary absorption to the light harvesting polymer poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl] (PCDTBT) into the PEDOT:PSS electrode, we achieve fully color neutral transparency perception and a color rendering index approaching 100. This makes the devices suitable for applications such as window shadowing or the integration into overhead glazing.  相似文献   

12.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

13.
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 microM with a sensitivity of 405 nA/microM. The biosensor was stable for at least 1 month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.  相似文献   

14.
This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process—“abrasion lithography”—takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq–1 and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.  相似文献   

15.
A simple and high-efficiency approach to loading macromolecules into microscale carriers is presented. Calcium-cross-linked alginate hydrogel microspheres were fabricated by an emulsification technique and then used as negatively charged templates to form polyelectrolyte multilayer coatings. A calcium ion chelator, EDTA, was used to free the Ca(2+)-cross-linked alginate hydrogel within {poly(allylamine hydrochloride)/poly (styrene sulfonate)}(4) ({PAH/PSS}(4)) coating, allowing partial release of alginate. The retention of alginate in {PAH/PSS}(4) microcapsule was confirmed by FTIR spectroscopy and confocal microscopy. Real-time confocal microscopy was used to investigate the loading process of positively charged macromolecules (dextran-amino, and peroxidase) into alginate-templated microcapsules, which showed the loading occurred in <2 min for dextran-amino and <10 min for peroxidase, respectively. A high loading efficiency of 25 mug peroxidase in approximately 1.0 x 10(7) microcapsules (2.5 pg POx/capsule) was achieved with a low concentration of peroxidase loading solution (10 mug/mL). This spontaneous loading technique for encapsulating positively charged molecules in alginate-templated polyelectrolyte microcapsules shows strong potential for biosensor and drug delivery applications.  相似文献   

16.
Improving the growth and pigment accumulation of microalgae by electrochemical approaches was considered a novel and promising method. In this research, we investigated the effect of conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) dispersible in water on growth and pigment accumulation of Haematococcus lacustris and Euglena gracilis. The results revealed that effect of PEDOT:PSS was strongly cell-dependent and each cell type has its own peculiar response. For H. lacustris, the cell density in the 50 mg·l−1 treatment group increased by 50·27%, and the astaxanthin yield in the 10 mg·l−1 treatment group increased by 37·08%. However, under the high concentrations of PEDOT:PSS treatment, cell growth was significantly inhibited, and meanwhile, the smaller and more active zoospores were observed, which reflected the changes in cell life cycle and growth mode. Cell growth of E. gracilis in all the PEDOT:PSS treatment groups were notably inhibited. Chlorophyll a content in E. gracilis decreased while chlorophyll b content increased in response to the PEDOT:PSS treatment. The results laid a foundation for further development of electrochemical methods to promote microalgae growth and explore the interactions between conductive polymers and microalgae cells.  相似文献   

17.
The results presented demonstrate how the screening of 104 light‐absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis of all the polymers corresponding to all combinations of donor and acceptor units is followed by characterization of all the materials with respect to molecular weight, electrochemical energy levels, band gaps, photochemical stability, carrier mobility, and photovoltaic parameters. The photovoltaic evaluation is carried out with specific reference to scalable manufacture, which includes large area (1 cm2), stable inverted device architecture, an indium‐tin‐oxide‐free fully printed flexible front electrode with ZnO/PEDOT:PSS (poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate), and a printed silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics included in the merit factor, it is found that 13 out of the 104 synthesized polymers outperformed poly(3‐hexylthiophene) under the chosen processing conditions and thus can be suitable for further development.  相似文献   

18.
Polyaniline (PAni) has been used frequently for the construction of biosensors. However, a prime limitation is its instability at basic or neutral pH because of the loss of its electrochemical activity and conductivity. In this study, three available sulfonated polyanions: Nafion, poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS) serving as the counterion and providing an acidic microenvironment to stabilize PAni, are used to fabricate a sensor for ammonium ion detection. Nafion used to be a common ion-sensitive membrane due to its high proton conductivity. However, its high cost and limited solubility has constrained its uses. PVS and PSS are water-soluble polymers, easily incorporating with PAni to form the composites. Surface analysis by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM), and the electrochromic property for the PAni composites provided the convenient tools to characterize the electrode fabrication. On the aspect of sensing the ammonium ions, the modified electrodes exhibited electroactivity of PAni in ammonium ion detection and also showed the linear dependence of reduction current on the ammonium ion concentration. The pH effect on the sensing response was also evaluated and found insignificant to the response (ranging from pH 6.9-7.6). For increasing the stability of the electrodes, the diazo-resin (DAR) was introduced to the coat on the outmost layer and then cured by UV irradiation, giving the covalent network between the layers of polyelectrolytes. The PSS-doped PAni electrode was found to perform detection sensitivity in the linear range of 0-100mM of ammonium ion concentration.  相似文献   

19.
Poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used as hole injection/extraction material in organic optoelectronics. However, there still exist drawbacks for PEDOT:PSS such as low work function (WF), poor structural and electrical homogeneity. To solve these problems, methylnaphthalene sulfonate formaldehyde condensate (MNSF) is applied, which has excellent dispersion property, branched chemical structure, and low cost, as dispersant and dopant instead of linear PSS to prepare PEDOT:MNSF. The hole injection/extraction capability of PEDOT:MNSF is systematically studied in organic optoelectronic devices. PEDOT:MNSF‐1:6 exhibits unexpected high device performance with a maxima current efficiency of 33.4 cd A?1 in blue phosphorescent organic light‐emitting diode and a power conversion efficiency of 13.1% in CH3NH3PbIx Cl3?x ‐based inverted perovskite solar cell, respectively. Compared with PEDOT:PSS, the relatively higher efficiency of PEDOT:MNSF‐1:6 is attributed mainly to its higher WF of 5.29 eV, structural and electrical homogeneity. Our research displays a promising future of MNSF as a cheap and widely available alternative of PSS. Moreover, a clear map is provided for the design of dopant for PEDOT considering the structure of dopant.  相似文献   

20.
Indium‐tin‐oxide‐free (ITO‐free) polymer solar cells with composite electrodes containing current‐collecting grids and a semitransparent poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up‐scaling of the length of the solar cell from 1 to 6 cm and the effect of the grid line resistance are explored for a series of devices. Laser‐beam‐induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different resistances. The performance of ITO‐free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large‐area devices at simulated 1 Sun illumination. The generated current uniformity increases with decreasing light intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号