首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In order to elucidate the regulatory mechanism of blood glucose concentrations specific to chickens, carbohydrate metabolism in the liver, muscle and kidney and metabolite concentrations in the blood were investigated in chickens with acute and persistent hypoglycemia. Acute and persistent hypoglycemia were experimentally induced by a single injection of insulin (8 U/kg BW) or by continuous infusion of insulin (22.5 U/kg BW/day) for 4 days. Non-esterified fatty acid (NEFA) concentration in plasma and D-3-hydroxybutyrate (3HB) concentrations in liver and muscle increased in the acute hypoglycemia. Plasma NEFA concentration and 3HB concentration in the blood and liver were not changed at day 3 of persistent hypoglycemia, while 3HB concentration in the muscle was decreased. Phosphofructokinase (PFK) activity in the liver tended to increase but PFK and pyruvate kinase (PK) activities were unchanged in acute hypoglycemia. In persistent hypoglycemia, increase of hepatic PFK activity at day 1 in which it was reversed at day 3, and a small increase of muscle PK activity were observed, while PK and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver and kidney were not significantly changed. These results show that in the persistent hypoglycemic chickens, hepatic glycolysis transiently increases, which is followed by a small decrease, while glycolysis in muscles and gluconeogenesis in the liver and kidney are not significantly changed.  相似文献   

4.
5.
The purpose of the study was to investigate the relation between the catecholamines: noradrenaline and dopamine in the rat brain on one hand and hypoglycemic convulsions and coma on the other. Concentrations of noradrenaline in the hypothalamus, brain stem and cerebral cortex were decreased during hypoglycemic convulsions and were lower during coma than those during convulsions. Dopamine concentration in the striatum was decreased during convulsions and coma. It was shown that the decrease in concentration of catecholamines was a result of hypoglycemia but not of insulin action itself. Clonidine- alpha 2 agonist accelerated occurrence and prolonged duration of hypoglycemic convulsions. Haloperidol-dopamine receptor blocker had no effect on the time of occurrence or duration of convulsions and coma. The results indicate that noradrenaline may exert an inhibitory influence on hypoglycemic convulsions. No evidence has been provided to support involvement of dopamine in the control of hypoglycemic convulsions and coma.  相似文献   

6.
The potency of mono- and dikationic derivatives of adamantane and phenylcyclohexyl to prevent seizures induced in mice by intraperitoneal administration of 80 mg/kg pentylenetetrazol (corazol), was studied. Monocationic derivatives of phenylcyclohexyl, being the selective channel blockers of NMDA glutamate receptors, as well memantine and MK-801 in micromolar concentrations, prevented both clonic and tonic components of corazol-induced convulsions. Their dicatonic derivatives which are channel blockers of NMDA and AMPA types of glutamate receptors, failed to prevent clonic seizures but at submicromolar concentrations prevented the tonic extensions provoked by corazol. Evidently, convulsive action of corazol originating from suppression of GABA-ergic inhibition is realized through activation of glutamergic synaptic transmission, and NMDA receptors are mainly involved in genesis of clonic seizures whereas activation of AMPA receptors is important for the tonic component of the corazol-induced syndrome.  相似文献   

7.
8.
9.
10.
Kim HC  Shin CY  Seo DO  Jhoo JH  Jhoo WK  Kim WK  Shin EJ  Lee YH  Lee PH  Ko KH 《Life sciences》2003,72(16):1883-1895
Interest in dextromethorphan (DM) has been renewed because of its anticonvulsant and neuroprotective properties. However, DM at supra-antitussive doses can produce psychotomimetic effects in humans. Recently, we demonstrated that DM exerts psychotropic effects in mice [Neurosci. Lett. 288 (2000) 76, Life Sci. 69 (2001) 615]. We synthesized a series of compounds with a modified morphinan ring system, with the intention of developing compounds that retain the anticonvulsant activity with weak psychotropic effects [Bioorg. Med. Chem. Lett. 11 (2001) 1651]. In order to extend our understanding of the pharmacological intervention of these morphinans, we assessed their behavioral effects, and then examined whether they exert protective effects on maximal electroshock convulsions (MES) in mice. Repeated treatment (20 or 40 mg/kg, i.p./day x 7) with DM or dextrorphan (a major metabolite of DM; DX) significantly enhanced locomotor activity in a dose-related manner. This locomotor stimulation was accentuated more in the animals treated with DX, and might be comparable to that of phencyclidine (PCP). By contrast, treatment with a metabolite of DM [3-methoxymorphinan (3MM) or 3-hydroxymorphinan (3HM)], 3-allyloxy-17-methylmorphinan (CPK-5), or 3-cyclopropylmethoxy-17-methylmorphinan (CPK-6) did not significantly alter locomotor activity or patterns. The behavioral effects mediated by these morphinans and PCP paralleled the effects of conditioned place preference. DM, DX, CPK-5, and CPK-6 had anticonvulsant effects against MES, while 3MM and 3HM did not show any anticonvulsant effects. We found that DM, DX, CPK-5 and CPK-6 were high-affinity ligands at sigma(1) receptors, while they all had low affinity at sigma(2) receptors. DX had relatively higher affinity for the PCP sites than DM. By contrast, CPK-5 and CPK-6 had very low affinities for PCP sites, suggesting that PCP sites are not requisites for their anticonvulsant actions. Our results suggest that the new morphinan analogs are promising anticonvulsants that are devoid of PCP-like behavioral side effects, and their anticonvulsant actions may be, in part, mediated via sigma(1) receptors.  相似文献   

11.
Methionine-sulfoximine (MSO), a convulsant is known to increase the activity of histamine N-methyl transferase. The effect of a selective H3 receptor agonist R- (alpha) methylhistamine (RAMH) and antagonist (thioperamide, THP) and some antiepileptic drugs (gabapentin and sodium valproate) have been evaluated on MSO-induced convulsions in mice. The effect of THP was also evaluated in combination with these antiepileptic drugs. Sodium valproate (300 mg/kg, po) and gabapentin (400 mg/kg, po) offered protection against MSO-induced convulsions as evidenced by a significant prolongation of latency to abnormal dorsoflexion and complete protection against mortality within 6 h of administration. THP (15 mg/kg, ip) alone and in combination with sub-effective doses of gabapentin (75 mg/kg, po) and sodium valproate (75 mg/kg, po) revealed no significant differences from the control group or either drug alone. Hence, the convulsant action of MSO does not appear to be mediated via histaminergic mechanisms.  相似文献   

12.
Intracerebroventricular administration of prostacyclin (PGI2) was shown to block the incidence of tonic convulsions in mice. Prostacyclin was administered intracerebroventricularly (i.c.v.) to conscious mice prior to a transcorneal maximal electroshock (MES) or supra-maximal electroshock (SMES) as previously described (1). PGI2 i.c.v. blocked the tonic hindlimb extension (THE) and protected the animals from death induced by MES with an ED50 of 6.27 (2.53–11.10) μg/mouse i.c.v. The i.c.v. administration of its degradation product 6-keto PGF had no effect on the incidence of tonic convulsions but did reduce the duration of THE significantly. When PGI2 was administered intraperitoneally in doses as high as 2 mg/kg it did not block the THE. However, the duration of the THE as well as mortality were reduced by doses ranging from 0.25–2.0 mg/kg i.p. Prostacyclin caused a significant dose-related (p<.001) decrease in the duration of the THE with SMES in doses of 20–140 μg/mouse i.c.v. No concomitant decrease in the incidence of tonic convulsions was found against SMES.  相似文献   

13.
5rolGLP-HV is a promising dual-function peptide for the treatment of diabetes and thrombosis simultaneously. For investigating the therapeutic mechanism of 5rolGLP-HV for type 2 diabetes mellitus (T2DM), STZ-induced diabetic mice were established and treated with 5rolGLP-HV. The results showed that daily water and food intake, blood glucose, serum and pancreatic insulin levels significantly decreased after 5rolGLP-HV treatment with various oral concentrations, and 16 mg/kg was the optimal dose for controlling diabetes. 5rolGLP-HV treatment decreased the MDA levels and the T-SOD activity in serum and pancreatic of diabetic mice (but not up to significant difference), and significantly increased the expression of signal pathways related genes of rolGLP-1, also the density of insulin expression and the numbers of apoptosis cells in islets of diabetic mice were significantly decreased in comparison to the negative diabetic mice. These effects above may be clarified the hypoglycemic mechanisms of 5rolGLP-HV, and 5rolGLP-HV may be as a potential drug for diabetes in future.  相似文献   

14.
15.
The results of the experimental investigation on 15 rabbits are presented here. Hypoglycemic action of the standard exogenic insulin dose strengthened after performing transcerebral lateral electrostimulation on the right side with the weak current impulse.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1) receptor knockout (Glp1r(-/-)) mice exhibit impaired hepatic insulin action. High fat (HF)-fed Glp1r(-/-) mice exhibit improved, rather than the expected impaired, hepatic insulin action. This is due to decreased lipogenic gene expression and triglyceride accumulation. The present studies overcome these secondary adaptations by acutely modulating GLP-1R action in HF-fed wild-type mice. The central GLP-1R was targeted given its role as a regulator of hepatic insulin action. We hypothesized that acute inhibition of the central GLP-1R impairs hepatic insulin action beyond the effects of HF feeding. We further hypothesized that activation of the central GLP-1R improves hepatic insulin action in HF-fed mice. Insulin action was assessed in conscious, unrestrained mice using the hyperinsulinemic euglycemic clamp. Mice received intracerebroventricular (icv) infusions of artificial cerebrospinal fluid, GLP-1, or the GLP-1R antagonist exendin-9 (Ex-9) during the clamp. Intracerebroventricular Ex-9 impaired the suppression of hepatic glucose production by insulin, whereas icv GLP-1 improved it. Neither treatment affected tissue glucose uptake. Intracerebroventricular GLP-1 enhanced activation of hepatic Akt and suppressed hypothalamic AMP-activated protein kinase. Central GLP-1R activation resulted in lower hepatic triglyceride levels but did not affect muscle, white adipose tissue, or plasma triglyceride levels during hyperinsulinemia. In response to oral but not intravenous glucose challenges, activation of the central GLP-1R improved glucose tolerance. This was associated with higher insulin levels. Inhibition of the central GLP-1R had no effect on oral or intravenous glucose tolerance. These results show that inhibition of the central GLP-1R deteriorates hepatic insulin action in HF-fed mice but does not affect whole body glucose homeostasis. Contrasting this, activation of the central GLP-1R improves glucose homeostasis in HF-fed mice by increasing insulin levels and enhancing hepatic insulin action.  相似文献   

17.
《Life sciences》1994,55(16):PL301-PL305
Glucose facilitated diffusion into cells depends on concentration gradients between intracellular and extracellular spaces and can be modified by several factors such as insulin and contractions. Calmodulin participates in the insulin induced recruitment of vesicles containing glucose transporter molecules and its inhibition by trifluoperazine blocks insulin increases in glucose uptake. In the present study we tested if calmodulin inhibition with trifluoperazine blocks hindlimb muscle glucose uptake increase induced by contractions. Trifluoperazine does not inhibit exercise induced increases in glucose uptake; therefore, the mechanisms by which insulin and functional activity increase glucose uptake are different.  相似文献   

18.
19.
20.
The ionic dependence and the nature of conductance was examined at slowly inactivating inward current in metacerebral giant cells of Helix pomatia, induced by 50 mM pentylenetetrazol. Ramp and square wave depolarizations in voltage clamp mode revealed, that withdrawal of sodium ions prevented this current to flow. While TTX was ineffective, Mn, Co and Ni-ions and verapamil blocked the current. It is concluded that PTZ, especially in presence of TEA impairs calcium channels, which loose their specificity and transmit sodium ions, with very slow kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号