首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine follicular maturation begins by recruitment from a continually proliferating pool of small antral follicles; those receiving the appropriate stimulus differentiate rapidly through a series of structural and functional changes. Such ovarian activity can be induced in prepubertal gilts with a single injection of equine chorionic gonadotropin (eCG). Average follicular diameter in eCG treated females increased from approximately 2 mm before stimulation to 3.5 mm by 24 hr after injection, with subsequent growth to ovulatory size (8 or 9 mm) by 96 hr. Both theca and granulosa layers increased in thickness and complexity, and a prominent capillary bed evolved immediately outside the basement membrane separating the two layers. Cytoplasmic organelles associated with increased metabolic activity and steroidogenesis proliferated within the first 24 hr. Progressive changes included increasing amounts of lipid and rough and smooth endoplasmic reticulum, with the latter occurring in vesicular or lamellar forms and as lipid-associated whorls. Bizarre mitochondrial forms also appeared, often associated with lipids. The amount and proportion of rough and smooth endoplasmic reticulum shifted dramatically as follicles matured. By 24 hr, rough endoplasmic reticulum in thecal cells increased from 4.2 to 7% of cell volume, while the amount in granulosa cells increased from less than 3.5% to more than 10%; the quantity remained relatively constant in the theca but declined to prestimulation values in the granulosa layer. Rough endoplasmic reticulum predominated over smooth in the first 24 hr following stimulation but the proportions were then reversed, so that more than 10% of both layers was composed of smooth endoplasmic reticulum by the time ovulation was imminent. Some follicles had or were in the process of ovulating by 96 hr. Their walls were collapsed into prominent folds with the two cell types beginning to mix. Slight undulations and some regions of discontinuity were observed in basement membranes of large unovulated follicles at this time. In specimens collected at 96 hr poststimulation and processed for retention of lipid, lipid-like material was noticeable in the extracellular matrix surrounding cells that contained organelle configurations suggestive of steroidogenesis.  相似文献   

2.
The atresia of post-ovulatory and pre-ovulatory follicles of the viviparous smooth dogfish, Mustelus canis, is compared for approximately the first fourth of an 11 month gestation. A thick collagenous sheath and numerous tubules in the theca identify the large, folded stage A post-ovulatory follicle. In stage B the tubules have been filled by cells to form “islands.” In stage C the entire structure is greatly diminished, adjacent islands tend to fuse, the collagenous sheath is virtually gone and the granulosa is degenerating. Preovulatory follicles from large, yolky oocytes pass through four stages beginning with yolk phagocytosis by granulosa cells of the villi (stage I), which are long and granular in stage II; villi fuse, theca cells increase greatly, fill with granules (stage III), encroach on the granulosa and disperse it into small groups of cells which finally disappear (stage IV) leaving a mass of thecal cells. A special type of pre-ovulatory follicle from small non-yolky oocyte atresia exhibits prominent thecal tubules and an unusual arrangement of granulosa cells. This follicle appearrs to enlarge during the summer, becoming multilobed; few granules are present. The distribution of lipid in frozen sections, stained by Oil red O, is described for all types of follicles. Schultz and Lewis and Lobban tests for steroids were made on frozen sections with corresponding results. Positive green tests indicating the presence of steroids or possible steroidogenesis were limited to: (1) one post-ovulatory follicle, in the islands; (2) four stage III and seven late stage IV pre-ovulatory yolky atretic follicles; (3) two special atretic follicles. The special atretic follicle appears to be a unique feature of M. canis and it is suggested tentatively that it may be related to viviparity.  相似文献   

3.
Summary The endoplasmic reticulum in granulosa cells of primary, secondary, and small tertiary follicles of the porcine ovary is sparse and largely of the granular type.In granulosa cells of large tertiary follicles the endoplasmic reticulum shows distinct signs of proliferation. Some cells even contain whorls of endoplasmic reticulum membranes, essentially of the agranular variety.Direct continuity between endoplasmic reticulum membranes of the granular and agranular type as well as the continuous increase in agranular membranes suggest that these membranes may originate from the granular membranes.Granulosa cells isolated from large tertiary follicles by microdissection and keptin vitro show essentially the same ultrastructure as granulosa cells of intact large tertiary follicles.Some lipid droplets appear to be localized in cavities of the endoplasmic reticulum. It is suggested that the droplets contain precursor material for steroid hormone synthesis.Finally, the development of the agranular endoplasmic reticulum including the appearance of whorls in some granulosa cells of large tertiary follicles indicates that steroid synthesis may occur in such follicular granulosa cells.Read at the Meeting of the Swedish Society for Pathology in Umeå, September 25, 1965 (Bjersing, 1966).This investigation was supported by grants from the Swedish Medical Research Council (Projects No. 13 X-78-01, 12 X-78-02, and 12 X-78-03).  相似文献   

4.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

5.
An enzymatic method was developed to collect intact follicles at different stages of development from cyclic hamsters to study ovarian folliculogenesis under various circumstances. Ovaries from 6 adult hamsters on each day of the cycle (Day 1 = ovulation) were collected, corpora lutea and large preantral and antral follicles were dissected, and follicles saved. Minced ovaries were then incubated with a mixture of collagenase, DNAse and pronase at 37 degrees C for 20 min to disperse intact follicles. Histological studies with 2191 isolated follicles revealed 10 different stages of follicular development (depending on the number of granulosa cell layers surrounding the oocyte and development of the antrum). Of the total follicular population, 14% showed signs of atresia, with 50% of those having 1-3 layers of granulosa cells (Stages 1-3); a second peak of 18% was observed in antral follicles (Stages 8-10). No signs of thecal cells were evident until the follicles reached Stage 6 (7-8 layers of granulosa cells), which possibly accounts for reduced atresia in this class and beyond. Ultrastructural study revealed that there were no signs of morphological damage to the basement membrane or to other subcellular organelles in the small preantral follicles. The presence of subnuclear lipid droplets in follicles with 3 layers of granulosa cells provided evidence for potential steroidogenesis by small follicles. The number of Stage 1-10 follicles was remarkably constant throughout the estrous cycle (460 +/- 34 per animal on Day 1 vs. 492 +/- 66 on Day 4). The usefulness of this method in analyzing follicular kinetics is illustrated in experiments involving hypophysectomy and the effects of unilateral ovariectomy. This procedure offers an improved method to study the factors responsible for the growth and the differentiation of small preantral follicles in the mammalian ovary.  相似文献   

6.
Shidaifat F 《Theriogenology》2001,56(4):591-599
Growth factors are said to play a significant role in the development of ovarian follicles. We wished to measure the content of one growth factor, activin-A in goat ovarian follicles, and study its effect on goat granulosa cells steroidogenesis. The follicular fluid content of activin-A from small, medium and large antral follicles was determined by two-site enzyme immunoassay. The results showed that activin-A concentration in the follicular fluid increased as the size of the follicle increased and, thus, may act as a local regulator of follicle development. To examine this possibility, the effect of increasing concentration of activin-A (0, 1, 10, 100 ng/mL) on differentiated goat granulosa cells steroidogenesis was evaluated in vitro for 48 hours in a chemically defined medium. Activin-A treatment resulted in a significant inhibition of progesterone production concomitant with a significant stimulation of estradiol production. These results were confirmed by time-effect of 50 ng/mL activin-A on goat granulosa cells steroidogenesis for 24, 48 and 72 hours. Granulosa cells displayed differential steroidogenic responses to activin-A, estradiol production becoming enhanced and progesterone production suppressed. Based on these findings, it appears that activin-A is a local regulator of goat granulosa cell steroidogenesis, and may act to promote granulosa cell differentiation and inhibit its luteinization.  相似文献   

7.
Precisely which ovarian cells produce tissue inhibitors of metalloproteinases (TIMPs) is unclear. Although granulosa cells are reported to produce TIMPs, thecal TIMP production has not been investigated nor has the influence of TIMPs on theca cells. Furthermore, although periovulatory follicles have been examined, little is known about smaller ovarian follicles. Follicles >/= 2 mm in diameter were collected from Large White hybrid gilts on the day before predicted oestrus (n = 3) or after hCG treatment (n = 3) and divided into 1 mm size classes. Small (2 to < 5 mm) follicles were kept intact, whereas follicles >/= 5 mm were separated into follicular fluid, granulosa and theca cell compartments. After homogenization, TIMP-1, -2 and -3 were detected by reverse zymography. Theca cells (50 x 10(3) per well) were cultured with TIMP-1 (10, 100 or 200 ng ml(-1) with or without long-R3 insulin-like growth factor I (IGF-I)) in a serum-free system to investigate the effect on steroidogenesis and the number of cells. Both large and small pig follicles produced TIMPs and TIMP-1, -2 and -3 were detected in follicular fluid, granulosa and theca cell samples. There was a phase x tissue type interaction for the presence of both TIMP-1 and -2 (P < 0.03, P < 0.05, respectively), and TIMPs were detected in more granulosa and theca cell samples after hCG than during the follicular phase. The concentrations were influenced by the type of tissue (TIMP-1, P < 0.005; TIMP-2, P < 0.005, TIMP-3, P > 0.05), and the highest concentrations occurred in the theca tissue. There were tissue type x follicle size interactions for the presence of both TIMP-1 and -2 (P < 0.001). In vitro, TIMP-1 increased thecal steroidogenesis after 144 h (oestradiol, P < 0.05, progesterone, P < 0.001) but reduced the number of viable cells (P < 0.001). In conclusion, TIMP-1, -2 and -3 were present in large and small pig follicles and were produced by both granulosa and theca cells, although concentrations differed with the type of tissue. Production was regulated by factors including follicle size and phase of the oestrous cycle. In addition to controlling tissue remodelling, TIMP-1 may also regulate steroidogenesis.  相似文献   

8.
Endocrine and gametogenic functions of the ovulatory follicle may be linked. To verify this, we studied granulosa cell steroidogenesis in relation to oocyte fertilization and preimplantation embryo development in vitro. Multiple follicles were stimulated in in vitro fertilization patients with clomiphene citrate and ovulation was induced with human chorionic gonadotropin (hCG). Oocytes were fertilized with husband's sperm and normal embryos were replaced 48 h later. Granulosa cells were separated from follicular fluid from 64 follicles and incubated for 3 h with and without aromatase substrate (1 microM testosterone). Progesterone and estradiol levels were measured in follicular fluid and incubation medium. Follicular fluid steroid levels and granulosa cell steroidogenesis showed no significant differences for oocytes which cleaved normally and those which did not. Granulosa cell aromatase activity was high in all follicles, suggesting that the low periovulatory follicular fluid estradiol level is not explained by a fall in granulosa cell aromatase after hCG. High granulosa cell progesterone production and follicular fluid progesterone were consistent with advanced granulosa cell luteinization. Oocytes undergoing polyspermic activation were from larger follicles with elevated follicular fluid progesterone levels, suggesting that follicular size and follicular fluid progesterone are correlated with "over-ripeness" and polyspermy. No simple relationship exists between oocyte function and the present indices of granulosa cell steroid metabolism.  相似文献   

9.
10.
11.
Role of Thy-1+ and Ia+ cells in ovarian function   总被引:1,自引:0,他引:1  
Cryostat sections of anovulatory ovaries from persistent estrous rats following a single postnatal dose of testosterone and from persistent diestrous rats following long-term postnatal estradiol treatment were investigated. The indirect immunoperoxidase technique was used to localize ovarian Thy-1 and Ia glycoproteins, as well as several other cell surface markers, and the results were compared with those obtained in normal ovaries of cycling females. Folliculogenesis in persistent estrous rats proceeded up to cystic antral follicles and was associated with the occurrence of Thy-1+ stromal cells under follicular basal lamina. In contrast to normal ovaries, Thy-1+ material did not invade the basal layers of granulosa cells. There was also no association of Ia+ cells with follicular basal lamina, but Ia+ cells were usually found associated with some thecal vessels. In persistent diestrous rats folliculogenesis was significantly retarded in both advanced antrum formation and thecal development. Thy-1+ cells were usually present in theca. No Thy-1+ material was found among basal layers of granulosa cells and the depletion of thecal Ia+ cells was almost complete. We suggest that normal follicular development may be dependent on the correct effects of Thy-1+ and Ia+ cells in addition to appropriate gonadotropin and steroid stimulation. On the other hand, anovulatory syndromes following postnatal androgen or estrogen treatment might be induced by temporary direct ovarian effects disturbing the establishment of the normal relationship between follicular structures and the immune system.  相似文献   

12.
The chronological changes of the microvasculature during follicular development, ovulation and luteinization of mouse ovaries were examined by observation of serial histological sections, lectin angiographs and resin-corrosion casts. Graafian follicles possessing oocytes with germinal vesicles were surrounded by a few layers of basket-like capillary wreath adjacent to the follicular basement membrane. Just before ovulation 11–12 hr after hCG administration, some theca cells differentiated into hypertrophic cells, and the follicular basement membrane underwent fragmentation. Then the capillaries within the theca interna became dilated, and hyperpermeable and appeared to be injured. The capillary wreath extended into the follicle via the hypertrophied theca interna. After ovulation, the follicular wall became markedly edematous. Capillary branches invaded the granulosa cell layer of the ruptured follicle from the region of extravasation to form an intricate capillary network. The capillary network occupied the whole corpus luteum until 24 hr after hCG administration.  相似文献   

13.
Studies in both mammalian and nonmammalian ovarian model systems have demonstrated that activation of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways modulates steroid biosynthesis during follicle development, yet the collective evidence for facilitory versus inhibitory roles of these pathways is inconsistent. The present studies in the hen ovary describe the changing role of MAPK and PKC signaling in the regulation of steroidogenic acute regulatory protein (STAR) expression and progesterone production in undifferentiated granulosa cells collected from prehierarchal follicles prior to follicle selection versus differentiated granulosa from preovulatory follicles subsequent to selection. Treatment of undifferentiated granulosa cells with a selective epidermal growth factor receptor (EGFR) and ERBB4 receptor tyrosine kinase inhibitor (AG1478) both augments FSH receptor (Fshr) mRNA expression and initiates progesterone production. Conversely, selective inhibitors of both EGFR/ERBB4 and MAPK activity attenuate steroidogenesis in differentiated granulosa cells subsequent to follicle selection. In addition, inhibition of PKC signaling with GF109203X augments FSH-induced Fshr mRNA plus STAR protein expression and initiates progesterone synthesis in undifferentiated granulosa cells, but inhibits both gonadotropin-induced STAR expression and progesterone production in differentiated granulosa. Granulosa cells from the most recently selected (9- to 12-mm) follicle represent a stage of transition as inhibition of MAPK signaling promotes, while inhibition of PKC signaling blocks gonadotropin-induced progesterone production. Collectively, these data describe stage-of-development-related changes in cell signaling whereby the differentiation-inhibiting actions of MAPK and PKC signaling in prehierarchal follicle granulosa cells undergo a transition at the time of follicle selection to become obligatory for gonadotropin-stimulated progesterone production in differentiated granulosa from preovulatory follicles.  相似文献   

14.
The synthesis of progesterone by the corpus luteum is essential for the establishment and maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into three major events; luteinization (i.e., conversion of an ovulatory follicle), luteal regression, and pregnancy induced luteal maintenance/rescue. While the factors that control these events and dictate the final steroid end products are widely varied among different species, the composition of the corpus luteum (luteinized thecal and granulosa cells) and the enzymes and proteins involved in the steroidogenic pathway are relatively similar among all species. The key factors involved in luteal steroidogenesis and several new exciting observations regarding regulation of luteal steroidogenic function are discussed in this review.  相似文献   

15.
Summary To identify and describe ovarian follicles committed to undergo follicular degeneration (atresia), immature rats were primed with pregnant mare serum gonadotropin (PMSG). After PMSG treatment, preovulatory follicles develop but subsequently degenerate. Prior to the appearance of pyknotic nuclei (Stage I of atresia), degenerative changes were observed in focal areas of the granulosa cell layer. These changes include blebbing of the cytoplasm and alterations in the shape of the granulosa cells. The appearance of these degenerative changes coincides with a decrease in ovarian concentrations of estradiol and testosterone. Since estrogens and androgens maintain the follicle, the decline in estradiol and testosterone could be responsible for the further degenerative alterations that lead to complete deterioration of the preovulatory follicle. In Stage I atretic follicles, lysosome-derived autophagic vacuoles develop and macrophages invade both the thecal and granulosa cell layers. The combined actions of the autophagic vacuoles and macrophages could destroy both the granulosa-cell and thecal layers and thereby transform the preovulatory follicle into an ovarian cyst.  相似文献   

16.
A study has been made of the morphological and histochemical changes of the ovary of the field rat, Millardia meltada during its oestrous cycle and pregnancy. The follicular growth and atresia, ovulation and formation of corpora lutea occur throughout the year except severe winter months (December and January). Fluctuations in the follicular development occur on different days of the oestrous cycle and pregnancy. The granulosa cells show a progressive increase in their size in successive stages of follicle growth. The granulosae of normal follicles show some sparsely scattered lipid bodies which consist of phospholipids. Theca interna cells during follicular growth develop diffuse lipoproteins and lipid droplets consisting of triglycerides, phospholipids and cholesterol and/or its esters. The luteal cells of corpora lutea are formed by the granulosa cells as the theca interna cells degenerate and disappear. The fibroblast-like cells of thecal origin, alongwith the blood vessels, invade the luteal cell mass. The luteal cells during metoestrus, dioestrus and first half of pregnancy show abundant diffuse lipoproteins and a few lipid droplets composed mainly of phospholipids and some triglycerides, which are indicative of active steroidogenesis. The details of degenerative histological and histochemical alterations of corpora lutea during oestrous cycle and pregnancy are also described and discussed. Morphological and histochemical changes of follicular atresia are described. The granulosa cells of atretic follicle degenerate and disappear leaving behind theca interna cells which form patches of interstitial gland cells during the reproductive activity of the present rat. Interstitial gland cells show diffusely distributed sudanophilic lipoproteins and lipid droplets consisting of triglycerides, cholesterol and/or its esters and some phospholipids, which are indicative of steroidogenesis. The functional significance of histological and histochemical changes, which occur in various components of the ovary during oestrous cycle and pregnancy, has been discussed.  相似文献   

17.
In the mammalian ovary, oocytes are contained within ovarian follicles. These consist in an oocyte surrounded by supporting cells: an inner layer of granulosa cells and an outer layer of thecal cells separated by a basal lamina. At any one time, a developing cohort of follicles exists, from which only a small species-specific number are selected for continued development towards ovulation, with the remainder dying by follicular atresia. Here, we use in vitro methods to study interactions between two follicles in culture (follicle co-cultures). We show that, when two individual follicles are grown together in culture, cells and cellular processes migrate from the outer thecal layer of one follicle to the thecal layer of the other co-cultured follicle. These cells are identified as a mixed population containing primarily endothelial but also neuronal cells. Both are able to migrate through the ovarian interstitum, making contact with the basal lamina of other follicles and with similar cells from these other follicles. Networks of such cells might be involved in interfollicular communication and in the coordination of follicle selection for ovulation.  相似文献   

18.
The ability of granulosa and theca cells of the human ovarian follicle at different stages of development, as well as stromal and luteal tissues from human ovaries to metabolize androstenedione (delta 4) to testosterone (T), dihydrotestosterone (DHT), estrone (E1) and estradiol (E2) with or without exposure to additional amounts of folicle-stimulating hormone was investigated by in vitro experiments. The results show that all the aforementioned ovarian tissues metabolized delta 4 to DHT. Indeed, with the exception of estrogen-secreting granulosa cells from large antral follicle (greater than 10 mm diameter) and possibly also luteal tissue from mid-luteal phase ovaries, the various ovarian tissues preferentially metabolized delta 4 to DHT instead of E (E1 + E2). Although thecal tissue is a major source of delta 4 in human ovaries it is concluded that the granulosa cells do not interact with the theca for the synthesis of E as the follicle enlarges from 1 to 10 mm in diameter. Indeed, excessive thecal delta 4 during this growth phase probably inhibits normal follicular development. However, as the follicle enlarges beyond 10 mm in diameter, and as the granulosa cells begin to preferentially metabolize delta 4 to E, the two cell-types of the follicle may increasingly interact to enhance the follicular output of E.  相似文献   

19.
The morphology of the post-ovulatory follicle (or corpus luteum) in the sparrow (Passer domesticus) ovary has been investigated with special reference to the origin of luteal cells which finally fill the fillicular activity. The development and degeneration of luteal cell mass has been described in three phases. The luteal cell mass consists of hypertrophied granulosa luteal cells during the first phase and of both granulosa and thecal luteal cells during the second phase. During the second phase owing to their different staining reactions, both types of luteal cells can be differentiated. In the advanced stages of regression, i.e. during the third phase, the whole luteal cell mass consists of thecal luteal cells and connective tissue elements as the granulosa luteal cells had degenerated and disappeared by this stage.  相似文献   

20.
Growth differentiation factor-9 (GDF-9) was shown recently to be essential for early follicular development, including the appearance of the theca layer. Theca cells provide the androgen substrate for aromatization and estrogen production by granulosa cells. Using biologically active recombinant GDF-9 (rGDF-9) and an androgen-producing immortalized theca-interstitial cell (TIC) line or primary TIC, we have examined the action of this paracrine hormone on theca cell steroidogenesis. The effect of GDF-9 on TIC progesterone synthesis was marginal and inconsistent in the primary cultures. In immortalized theca cells, GDF-9 attenuated the forskolin-stimulated progesterone accumulation. More significantly, this oocyte-derived growth factor enhanced both basal and stimulated androstenedione accumulation in the primary and transformed TIC cultures. The effects of GDF-9 on steroidogenesis by preovulatory follicles were relatively modest. Likewise, it did not affect the maturation of follicle-enclosed oocytes. The effect of GDF-9, an oocyte product, on TIC androgen production suggests a regulatory role of the oocyte on theca cell function and hence on follicle development and differentiation. This direct effect of GDF-9 on thecal steroidogenesis is consistent with its recently demonstrated actions on thecal cell recruitment and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号