首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the overall pattern and timing of gonadal sex differentiation have been established in a considerable number of teleosts, the ultrastructure of early stages of gonadal development is not well documented. In this study, gonads from larval and juvenile stages of laboratory-reared Cichlasoma dimerus were examined at the light-microscopic and ultrastructural levels. This freshwater species adapts easily to captivity and spawns with high frequency during 8 months of the year, providing an appropriate model for developmental studies. Larvae and juveniles were kept at a water temperature of 26.5 +/- 1 degrees C and a 12:12 hour photoperiod. Gonadal development was documented from 14-100 days postfertilization, covering the period of histologically discernible sex differentiation. Gonadal tissue was processed according to standard techniques for light and electron microscopy. C. dimerus, a perciform teleost, is classified as a differentiated gonochorist, in which an indifferent gonad develops directly into a testis or ovary. On day 14, the gonadal primordium consists of a few germ cells surrounded by enveloping somatic cells. Ovarian differentiation precedes testicular differentiation, as usual in teleost fishes. The earliest signs of differentiation, detected from day 42 onward, include the onset of meiotic activity in newly formed oocytes, which is soon accompanied by increased oogonial mitotic proliferation and the somatic reorganization of the presumptive ovary. The ovarian cavity is completely formed by day 65. Numerous follicles containing perinucleolar oocytes are observed by day 100. In contrast, signs of morphological differentiation in the presumptive testis are not observed until day 72. By day 100, the unrestricted lobular organization of the testis is evident. The latest stage of spermatogenesis observed by this time of testicular development is spermatocyte II.  相似文献   

2.
Formation of the germinal epithelium and folliculogenesis during ovarian development in Cichlasoma dimerus were described at the light‐ and electron‐microscopic levels. Prior to gonadal differentiation, germ cells and enveloping support cells reside within an inpocketing of the coelomic epithelium. Separation of the germinal and interstitial compartments of the gonad by a basement membrane is apparent from early gonadal development. Upon ovarian differentiation, oogonia undergo cyst‐forming divisions leading to the formation of clusters of interconnected cystocytes that synchronously enter meiosis, becoming oocytes. At the pachytene step, each oocyte becomes individualized by cytoplasmic extensions of prefollicle cells, thereby developing as an ovarian follicle. Subsequent somatic reorganization leads to the formation of the ovarian lumen in a cephalo‐caudal gradient. As a result, the germinal epithelium becomes internalized and lines the ovarian lumen. As defined by its origin from the germinal epithelium, the ovarian follicle is composed of an oocyte and the surrounding follicle cells. Thecal cells derived from the stroma encompass the basement membrane outside the follicle, thus forming a follicle complex. A common basement membrane is shared by the germinal epithelium and the follicle complex along a small portion of its surface. This point of attachment represents the site at which the oocyte would be released to the ovarian lumen during ovulation.  相似文献   

3.
Huysseune A  Sire JY 《Tissue & cell》1997,29(6):679-697
In order to build a reference system to assess results of ongoing in vitro experiments on the study of epithelial-mesenchymal interactions during odontogenesis in actinopterygians, we have chosen to study the first-generation teeth of the cichlid Hemichromis bimaculatus from initiation until attachment both at the light and transmission electron microscopical level. Although their development follows the general pattern of teleost tooth formation, first-generation teeth show peculiarities compared with later tooth generations, including their size, bare emergence from the epithelium, absence of dentinal tubules and of nerves and capillaries in the pulp cavity, and organization of the outer dental epithelium. Four developmental stages (a to d) prior to attachment (stage e) have been distinguished. The oral epithelium invaginates into the underlying mesenchyme (stage a) and is later folded to form a bell-shaped dental organ (stage b) without any primordial thickening, or any other morphological indication of imminent invagination. Then, the collagenous enameloid matrix is laid down, most probably by the odontoblasts (early stage c), soon followed by predentine deposition and the beginning of enameloid mineralization (late stage c). With ongoing dentinogenesis, the enameloid matrix matures (stage d), i.e. the organic constituents are removed and the matrix further mineralizes. Finally (stage e), an annular collar of attachment bone is deposited to fix the tooth onto the underlying bone.  相似文献   

4.
Sire, J.‐Y. and Arnulf, I. 2000. Structure and development of the ctenial spines on the scales of a teleost fish, the cichlid Cichlasoma nigrofasciatum. — Acta Zoologica (Stockholm) 81 : 139–158 Numerous teleost species possess ctenoid scales characterized by the presence of ctenial spines arranged in rows (the cteni) along their posterior, free margin. Whilst the morphology and function of the ctenial spines are similar to those of odontodes (extra‐oral teeth), e.g. in armored catfish, their homology is questionable. To address this problem, we have studied ctenial spine development, structure, attachment to a bony support, and replacement with the aim of comparing these features to those described for odontodes. The ctenial spines have been studied in a growth series of the cichlid Cichlasoma nigrofasciatum, using light, scanning and transmission electron microscopy. Ctenial spines are entirely constituted of a collagen matrix. They lack a pulp cavity and, although their distal end can be in contact with the epidermal basal layer cells, they are not covered by an enameloid‐like tissue. They are attached to the scale by means of a narrow strand of unmineralized collagen matrix acting as a ligament and allowing spines to be movable. The ctenial spines develop as prolongations of the external layer of the scale, a woven‐fibroid collagen matrix, and subsequently grow by addition of parallel‐fibred collagen matrix. New ctenial spines are added at the posterior scale border in waves that follow the same rhythm as the deposition of circuli in the anterior region. From the focus region to the scale border, the ctenial spines constitute lines in which only the most posterior ctenial spine is functional. The other spines that are no longer functional are not shed but resorbed from the top, and their attachment region mineralizes and thickens by deposition of new material. The remnants of spines constitute the main part of the superficial layer of the scale in which anchoring bundles attach; this region is covered afterwards by the limiting layer, a tissue devoid of collagen fibrils. Because of their tooth‐like morphology (shape and size), their posterior orientation and their attachment to the scale surface, the ctenial spines resemble odontodes. Moreover, both elements perform a similar hydrodynamic function. Nevertheless, the structure and development of the ctenial spines differ completely from those of odontodes and consequently, they cannot be considered homologous elements. Ctenial spines and odontodes in teleosts provide us with a beautiful example of homoplasy; they share shape and function, but have a different origin as evidenced by their different structure and process of development.  相似文献   

5.
Summary Paedogenetically developing eggs of the gall midgeHeteropeza pygmaea are not deposited, but develop in the hemocoel of the mother larva. The nurse chamber remains present in the cleaving egg, and the follicular epithelium does not form a chorion but envelops the growing egg during embryonic development. It is possible to obtain naked eggs, i.e. eggs lacking the follicular epithelium, which are able to develop up to the blastoderm stage but remain spherical instead of assuming an elongated shape. Oogenesis of normal and naked eggs has been studied at the ultrastructural level with special reference to the nurse chamber. It is shown that the nurse chamber nuclei develop large nucleoli during oogenesis, indicating that the nurse chamber supplies the oocyte with ribosomal RNA (rRNA). The dense bodies in the nurse chamber may represent an intermediate stage in the transport of the rRNA from the nurse chamber to the oocyte; they are probably not related to the polar granules in the oocyte. It is also shown that the intercellular bridge joining the nurse chamber to the oocyte disappears shortly before cleavage initiation. During egg cleavage the follicular epithelium surrounds the nurse chamber, which degenerates and is gradually absorbed by the growing egg plasmodium. Naked cleaving eggs are never attached to a nurse chamber or to relics of it. Naked oocytenurse chamber complexes frequently aggregate, which may indicate a role of the follicular epithelium in follicle separation during normal development.  相似文献   

6.
Heterogeneous exposure to parasites may contribute to host species differentiation. Hosts often harbour multiple parasite species which may interact and thus modify each other’s effects on host fitness. Antagonistic or synergistic interactions between parasites may be detectable as niche segregation within hosts. Consequently, the within-host distribution of different parasite taxa may constitute an important axis of infection variation among host populations and species. We investigated the microhabitat distributions and species interactions of gill parasites (four genera) infecting 14 sympatric cichlid species in Lake Victoria, Tanzania. We found that the two most abundant ectoparasite genera (the monogenean Cichlidogyrus spp. and the copepod Lamproglena monodi) were non-randomly distributed across the host gills and their spatial distribution differed between host species. This may indicate microhabitat selection by the parasites and cryptic differences in the host–parasite interaction among host species. Relationships among ectoparasite genera were synergistic: the abundances of Cichlidogyrus spp. and the copepods L. monodi and Ergasilus lamellifer tended to be positively correlated. In contrast, relationships among morphospecies of Cichlidogyrus were antagonistic: the abundances of morphospecies were negatively correlated. Together with niche overlap, this suggests competition among morphospecies of Cichlidogyrus. We also assessed the reproductive activity of the copepod species (the proportion of individuals carrying egg clutches), as it may be affected by the presence of other parasites and provide another indicator of the species specificity of the host–parasite relationship. Copepod reproductive activity did not differ between host species and was not associated with the presence or abundance of other parasites, suggesting that these are generalist parasites, thriving in all cichlid species examined from Lake Victoria.  相似文献   

7.
Morphological features of the gill and opercular epithelia of tilapia (Oreochromis mossambicus) have been compared in fish acclimated to either fresh water (FW) or hypersaline water (60 S) by scanning electron and fluorescence microscopy. In hyperosmoregulating, i.e., FW-acclimated, tilapia only those mitochondria-rich (MR) cells present on the filament epithelium of the gill were exposed to the external medium. After acclimation of fish to hypersaline water these cells become more numerous, hypertrophy extensively, and form apical crypts not only in the gill filament but also in the opercular epithelium. Regardless of salinity, MR cells were never found to be exposed to the external medium on the secondary lamellae. In addition, two types of pavement cells were identified having distinct morphologies, which were unaffected by salinity. The gill filaments and the inner operculum were generally found to be covered by pavement cells with microridges, whereas the secondary lamellae were covered exclusively by smooth pavement cells.  相似文献   

8.
Summary The structure of follicular layer of growing and atretic follicles in the ovary of the domestic goose, was studied by electron microscopy. In small follicles, the wall is lined with a narrow layer of tightly packed small, cuboidal cells separated from the thecal tissue by the basal lamina. During growth, they transform into tall, columnar cells arranged in a single row. The cells display several peculiar ultrastructural features. First, annulate lamellae are commonly observed. Second, cytoplasmic dense-cored granules accumulate in close association with fenestrated cisternae and networks of tubuli derived from the RER. They consist of spheres and strands of amorphous substance of unknown origin. Third, the cells contain many transosomes, a unique organelle of the avian follicle cell consisting of a dense plaque associated with ribosome-like particles. The mature forms of transosomes are located at the tips of lateral and apical cell projections, while bodies thought to be their precursors, are found in the apical cytoplasm. In follicles larger than 8 mm in diameter, most of the transosomes and their precursors have disappeared. Follicular atresia occurs in all of the size-classes of follicles investigated. A loss of transosomes (in follicles up to 8 mm in diameter) and an accumulation of lipid droplets are the first atretic events detectable by electron microscopy. Morphologic features, including deep nuclear indentations, accumulation of lipid droplets frequently encireled by membrane whorls, dilation and disintegration of RER cisterns, swelling of mitochondria and accumulation of dense irregular masses of unknown origin in the cytoplasm, are taken as evidence for advanced degradation. We conclude that necrosis is the dominant type of cell death of the follicular cells during atresia. However, a small fraction of cells, characterized by dark condensed cytoplasm, seems to die by apoptosis.  相似文献   

9.
Summary The intestinal epithelium of Ascaris suum consists of a single layer of tall columnar epithelial cells that rest on a thick basal membrane in contact with the pseudocoelomic cavity. Experiments were conducted on glutaraldehyde-fixed tissue to ascertain the nature of the electronegative charges associated with both the apical microvillar surface and basal membrane.A strong electronegative charge was demonstrated on the microvillar surface and basal membrane with ruthenium red and cationic ferritin staining. The ionic nature of ferritin binding was demonstrated with poly-L-lysine, a polycation that interacts with anionic groups on the membrane and thus blocks the subsequent binding of ferritin. Tissue thus treated was devoid of reaction product. Methylation with diazomethane completely abolished staining. Since the stronger acidic groups of sulfates or phosphates would not be protonated under the conditions employed in this study, and therefore susceptible to methylation, staining by ferritin is thought to be due to its interaction with carboxyl groups. Prior enzymatic treatment of tissue with neuraminidase or phospholipase C had no effect on subsequent ferritin binding. Tissue exposed to colloidal iron at various pH values showed maximal reactivity at a pH of 2.5 or above. Above pH 2.5, the dissociation of protons from free carboxyl groups of protein-bound amino-acid residues with pK's of 3.8 and 4.2 would be maximal, and the ionized carboxyl groups are then available to interact with iron micelles. These results suggest the presence of weaker acidic groups, such as the carboxyl groups of acidic amino acids or uronic acid residues. The stronger acidic groups of sialic acid and the esterified sulfate groups, if present, contribute only minimally to overall staining. These results demonstrate that a high electronegative charge density exists, despite the apparent lack of sialic acid. Staining is believed to be due to carboxyl groups of acidic amino acids and/or carboxyl groups or uronic acid residues.Part of this work was conducted at the Department of Zoology, Louisiana State University, Baton Rouge, Louisiana  相似文献   

10.
The discus fishes (Symphysodon spp.) are economically important ornamental species. Thirteen microsatellite markers were developed from a CT(12) - and CA(12) -enriched whole genomic DNA library of Symphysodon discus. Allelic variability was tested on 44 individuals of two species (S. discus and S. aequifasciatus). Allelic richness ranged from two to 11 alleles per locus and observed heterozygosities from 0.083 to 0.998. All loci were at Hardy-Weinberg equilibrium, and no pair of loci showed linkage disequilibrium within a species. Cross-species amplification was also successfully performed in the Neotropical cichlids Uaru amphiacanthoides, Hoplarchus psittacus, Hypselecara coryphaenoides, Pterophyllum sp., Mesonauta sp. and Heros sp.  相似文献   

11.
12.
A. Meyer 《Oecologia》1989,80(3):431-436
Summary The feeding performance on soft and hard prey of two morphs of the trophically polymorphic Neotropical cichlid fish, Cichlasoma citrinellum, was investigated in the laboratory. The molariform morphs, specialized to feed on hard prey, are able to crack snail shells that are twice as hard as those cracked by the papilliform morphs. During ecological bottlenecks in food resources this ability should allow molariform morphs to exploit alternate, less preferred prey sources that are not available to papilliform morphs. Analysis of stomach contents revealed that molariform morphs feed significantly more often on hard snails than do papilliform morphs (Meyer 1989a). The performance advantage of the trophically specialized morphs when feeding on hard prey is countered by their less efficient performance on soft diets. The morphologically generalized papilliform morph feeds more efficiently on soft prey. The abundance of preferred soft prey, seasonal fluctuations in prey availability and the frequency of ecological bottlenecks may determine the relative abundance of these two morphs in natural populations in Nicaraguan lakes.  相似文献   

13.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

14.
Twelve short tandem repeat markers were successfully isolated from a cichlid, Haplochromis chilotes, in Lake Victoria, and characterized in Haplochromis pyrrhocephalus. The microsatellite regions of these markers were found to have between two and 48 alleles with heterozygosity ranging from 0.07 to 0.97. No loci showed significant departures from the Hardy–Weinberg or linkage equilibrium after the Bonferroni correction (P > 0.05). Cross‐species amplification in other cichlids of Lake Victoria, Haplochromis laparogramma, Lithochromis rubripinnis, L. rufus and Haplochromis sp. ‘rockkribensis’, was successful.  相似文献   

15.
The fine structure of the epithelium lining the tympanic cavity of the chicken was studied by TEM and SEM. In addition, the distribution of nonspecific esterase activity in the epithelium was investigated by TEM. Ultrastructural study revealed the presence of disk-like apical protrusions of the epithelial cells, previously not observed in other cell types. The protrusions contained some cytoplasmic organelles and were characterized by a ring-shaped thickening around their periphery. The ring was made up of a granulo-filamentous material. Our observations clearly indicate the existence of an apocrine secretory mechanism, consisting of a progressive detachment of disk-like protrusions from the apex of the epithelial cells. The ultracytochemical study demonstrated nonspecific esterase activity on the epithelial surface and in the secretory vesicles. We propose that nonspecific esterase is a marker for middle ear surfactant in birds.  相似文献   

16.
We investigated acoustic and visual communication concurrently in wild caught adult and captive-born, first generation offspring of the East African Rift Lake cichlid fish Tramitichromis intermedius. Only males emit sound during courtship. Sound production is always accompanied by quivering, but quiver behavior is not always accompanied by sound. This separation of quivering and sound supports the hypothesis that sound production is intentional serving a communicative role. As spawning nears, both sound production and quiver behavior increase. In terms of the ontogeny of sound production, the first observation of courtship occurs just days before the first spawning event and the first sound emission accompanies the first courtship activity. The accompaniment of quivering with sound as well as the escalation of the two behaviors with the approach of spawning follows similar patterns in wild caught and captive-born males. The tight correlation between behavior and sound production in both groups indicates their simultaneous performance plays an important role in reproduction. It is probable that the ability to produce sound and perform quiver behavior at the same time may be a measure of mate quality.  相似文献   

17.
Distributional records of non‐native fish species were identified in the Wet Tropics region, Far North Queensland, Australia, through a compilation of published records and expert knowledge. A total of 1106 records were identified comprising 346 presence and four uncertain records for at least 13 species, and 756 absence records. All current presence records consist of six species from the families Cichlidae and Poeciliidae with established self‐sustaining populations in the region, probably affecting the highly diverse native fish fauna.  相似文献   

18.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

19.
The development of the frontal bone and the formation of the first head scales are described during post-embryonic ontogeny of Hemichromis bimaculatus, using light and transmission electron microscopy. The frontal bone originates close to the cartilaginous taenia marginalis in a loose mesenchymal cell condensation (=primordium) lying 1 m from the epidermis with which it establishes no cell contacts. The anlage appears at 4.2 mm standard length (SL) in the form of the membranodermal component of the bone, and extends first over the brain and then over the eye; the neurodermal component forms later to surround the supraorbital canal. The first head scales appear at 10.0 mm SL in a dense cell condensation (papilla) adjoining the epidermal-dermal junction and, once formed, remain in this position. In both organs, the initial matrix is similarly composed of woven-fibred bone that soon mineralizes in a similar manner to other dermal elements. In some areas of the frontal bone, parallel-fibred bone is deposited unequally on both surfaces, whereas isopedine is deposited in scales on the deep surface only. Osteoblastic features confirm this eccentric growth. Differences in the shape, organization and localization of the mesenchymal condensations giving rise to the frontal bone and to the scale reflect the existence of two types of dermal cell condensations. Our data are compared with those available for the post-cranial dermal skeleton of fishes both from a developmental and structural viewpoint. Structural differences in the matrices of the frontal bone and scales are discussed in a phylogenetic perspective.  相似文献   

20.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号