首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Limited information on the protein expression profiles of the different components of mammalian brain is available to date. In the present study, proteomic analysis was performed on 32 white matter samples obtained from 8 different regions of brains of four post mortem cases. Proteins were separated by 2D gel electrophoresis and identified by mass spectrometry. Most of the protein spots (98%) are reproducibly present in all the samples analyzed. A total of 64 different proteins were identified and divided into seven functional groups. These include metabolic proteins (33%), structural proteins (9%), proteins involved in signal transduction (9%), blood proteins (8%), stress related proteins (23%), and proteins involved in the ubiquitin mediated proteolysis (6%). This protein database obtained from the white matter of human brain contributes to deepen our knowledge on the molecular mechanisms that control several pathologies affecting this key component of the brain.  相似文献   

2.
Down syndrome (DS, trisomy 21) is the most frequent genetic cause of mental retardation. Although known for more than a hundred years the underlying pathomechanisms for the phenotype and impaired brain functions remain elusive. Performing protein hunting in fetal DS brain, we detected a series of cytoskeleton proteins with aberrant expression in fetal DS cortex. Fetal brain cortex samples of controls and DS of the early second trimenon of gestation were used for the experiments. We applied two-dimensional electrophoresis with in-gel digestion of protein spots, subsequent mass spectroscopical (MALDI) identification, and quantification of spots using specific software. Centractin alpha, F-actin capping protein alpha-1, alpha-2 and beta subunits were significantly reduced in fetal DS cortex, whereas dynein intermediate clear 2, dynein intermediate chain 2, and kinesin light chain protein levels were unchanged. Centractins and F-actin capping proteins are major determinants of the cytoskeleton and are involved in pivotal functions including cellular, organelle, and nuclear motility. Deranged centractins and F-actin capping proteins may represent or induce deficient axonal transport and may well contribute to deterioration of the cytoskeleton's mitotic functions in trisomy 21.  相似文献   

3.
Total cellular polyadenylated RNA [poly(A)+ RNA] was prepared after guanidinium thiocyanate extraction of frozen brain tissue from age-matched normal and Down's-syndrome (trisomy 21) human foetuses. Poly(A)+ RNA populations were analysed by translation in vitro, followed by two-dimensional gel analysis by using both isoelectric focusing (ISODALT system) and non-equilibrium pH-gradient electrophoresis (BASODALT system) as the first-dimension separation. The relative concentrations of poly(A)+ RNA species coding for seven translation products were significantly altered in Down's syndrome, as determined by both visual comparisons of translation-product fluorograms from normal and Down's-syndrome samples and by quantitative radioactivity determination of individual translation products. The relative concentrations of mRNA species coding for two proteins (68 kDa and 49 kDa) were increased in Down's syndrome and may represent genes located on chromosome 21. The relative concentrations of mRNA species coding for five proteins (37 kDa, 35 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) were decreased in Down's syndrome, these probably representing secondary effects of the trisomy. Six Down's-syndrome-linked translation products (49 kDa, 37 kDa, 33 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) did not migrate with appreciable amounts of cellular proteins on two-dimensional gels and hence may represent either proteins of high turnover rates or those that are post-translationally modified in vivo. One translation product (68 kDa) comigrated with a major cellular protein species, which was identified as a 68 kDa microtubule-associated protein by limited peptide mapping. The significance of these changes is discussed in relation to the mechanisms whereby the Down's-syndrome phenotype is expressed in the human brain.  相似文献   

4.
A hypothesis was formed that it would be possible to isolate an adequate amount of protein from a patient, having normal renal function, to identify biological markers of a particular disease state using a variety of proteomics techniques. To support this hypothesis, three samples of urine were collected from a volunteer: first when healthy, later when experiencing acute inflammation due to a pilonidal abcess, and again later still after successful recovery from the condition. The urine from these samples was processed by solid-phase extraction to concentrate and desalt the endogenous proteins and peptides. The proteins and peptides from these urine samples were analyzed in three different experiments: (1) traditional two-dimensional gel electrophoresis followed by proteolysis and mass spectrometric identification of various protein spots, (2) whole mixture proteolysis followed by one-dimensional packed capillary liquid chromatography and tandem mass spectrometry, (3) whole mixture proteolysis followed by two-dimensional capillary liquid chromatography and tandem mass spectrometry. In all three cases, a set of proteins was identified representing putative biomarkers. Each of these proteins was then found to have been previously linked in the scientific literature to inflammation. One acute phase reactant in particular, orosomucoid, was readily observed in all three experiments to dramatically increase in abundance, thereby supporting the hypothesis.  相似文献   

5.
Chilling stress-induced proteomic changes in rice roots   总被引:4,自引:0,他引:4  
  相似文献   

6.
Only few biological markers are currently available for the routine diagnosis of brain damage-related disorders including cerebrovascular, dementia, and other neurodegenerative diseases. In this study, post-mortem cerebrospinal fluid samples were used as a model of massive brain insult to identify new markers potentially relevant for neurodegeneration. The protein pattern of this sample was compared to the one of cerebrospinal fluid from healthy subjects by two-dimensional gel electrophoresis. Using gel imaging, N-terminal microsequencing, mass spectrometry, and immunodetection techniques, we identified 13 differentially expressed proteins. Most of these proteins have been previously reported to be somehow associated with brain destruction or with the molecular mechanisms underlying certain neurodegenerative conditions. These data indicate that the identified proteins indeed represent potential biomarkers of brain damage. We recently showed that H-FABP, a protein highly homologous to E-FABP and A-FABP identified in this study, is a potential marker of Creutzfeldt-Jakob disease and stroke.  相似文献   

7.
It is well documented that methamphetamine (MA) can cause obvious damage to the brain, but the exact mechanism is still unknown. In the present study, proteomic methods of two-dimensional gel electrophoresis in combination with mass spectrometry analysis were used to identify global protein profiles associated with MA-induced neurotoxicity. For the first time, 30 protein spots have been found differentially expressed in different regions of rat brain, including 14 in striatum, 12 in hippocampus and 4 in frontal cortex. The proteins identified by tandem mass spectrometry were Cu, Zn superoxide dismutase, dimethylarginine dimethylaminohydrolase 1, alpha synuclein, ubiquitin-conjugating enzyme E2N, stathmin 1, calcineurin B, cystatin B, subunit of mitochondrial H-ATP synthase, ATP synthase D chain, mitochondrial, NADH dehydrogenase(ubiquinone) Fe-S protein 8, glia maturation factor, beta, Ash-m, neurocalcin delta, myotrophin, profiling IIa, D-dopachrome tautomerase, and brain lipid binding protein. The known functions of these proteins were related to the pathogenesis of MA-induced neurotoxicity, including oxidative stress, degeneration/apoptosis, mitochontrial/energy metabolism and others. Of these proteins, alpha-synuclein was up-regulated, and ATP synthase D chain, mitochondrial was down-regulated in all brain regions. Two proteins, Cu, Zn superoxide dismutase, subunit of mitochondrial H-ATPsynthase were down-regulated and Ubiquitin-conjugating enzyme E2N, NADH dehydrogenase (ubiquinone) Fe-S protein 8 were up-regulated simultaneously in striatum and hippocaltum. The expression of dimethylarginine dimethylaminohydrolase 1 (DDAH 1) increased both in striatum and frontal cortex. The parallel expression patterns of these proteins suggest that the pathogenesis of MA neurotoxicity in different brain regions may share some same pathways.  相似文献   

8.
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.  相似文献   

9.
The pituitary is the master endocrine gland responsible for the regulation of various physiologic and metabolic processes. Proteomics offers an efficient means for a comprehensive analysis of pituitary protein expression. This paper reports on the application of proteomics for the mapping of major proteins in a normal (control) pituitary. Pituitary proteins were separated by two-dimensional gel electrophoresis with immobilized pH 3-10 gradient strips. Major protein spots that were visualized in the two-dimensional gel by silver staining were excised, and the proteins in these spots were digested with trypsin. The tryptic digests were analyzed by mass spectrometry, and the mass spectrometric data were used to identify the proteins through searches of the SWISS-PROT or NCBInr protein sequence databases. The majority of the proteins were identified on the basis of peptide mass fingerprinting data obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Several proteins were also characterized based on product-ion spectra measured by post-source decay analysis and/or liquid chromatography-electrospray-quadrupole ion trap mass spectrometry. To date, 62 prominent protein spots, corresponding to 38 different proteins, were identified. The identified proteins include important pituitary hormones, structural proteins, enzymes, and other proteins. The protein identification data were used to establish a two-dimensional reference database of the human pituitary, which can be accessed over the Internet (http://www.utmem.edu/proteomics). This database will serve as a tool for further proteomics studies of pituitary protein expression in health and disease.  相似文献   

10.
大鼠脑皮质表达蛋白质组学研究   总被引:3,自引:0,他引:3  
文章用蛋白质组学方法初步分析大鼠脑皮质蛋白质的表达。提取大鼠脑皮质蛋白质,双向凝胶电泳分离,考马斯亮蓝染色,胰蛋白酶胶内酶解,用基质辅助激光解吸/电离飞行时间质谱对酶解后的肽段进行分析,根据肽质量指纹图谱,检索专业数据库(Swissprot),对蛋白质进行鉴定。鉴定出84个蛋白,分别属于代谢酶、细胞骨架蛋白、热休克蛋白、抗氧化蛋白、信号传导蛋白、蛋白酶体相关蛋白、神经元特异蛋白及神经胶质蛋白等。文章结果丰富了大鼠脑皮质蛋白质组数据库,为在大鼠模型上研究神经疾病奠定了基础。  相似文献   

11.
Voltage-dependent anion channel (VDAC) proteins are small, abundant, pore-forming proteins belonging to the eukaryotic mitochondrial porins. At least three different VDAC genes have been identified in vertebrates. VDAC proteins are known to play an essential role in cellular metabolism and in the early stages of apoptosis. A proteomic approach, consisting of two-dimensional gel electrophoresis followed by two-dimensional immunoblotting with anti-VDAC and anti-phosphotyrosine antibodies and by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, was exploited to define the expression pattern of VDAC isoforms in guinea pig brain synaptosomes, both in normoxic and hypoxic conditions. In this way a total of five different VDAC isoforms were identified, as both VDAC1 and VDAC2 were detected in more than one electrophoretic spot. Moreover, VDAC isoforms selectively undergo hypoxia-induced tyrosine phosphorylation, suggesting that tyrosine phosphorylation may contribute to the modulation of VDAC protein function/conformation or interaction with other proteins in hypoxic conditions.  相似文献   

12.
Proteome analysis in the central nervous system area represents a large and important challenge in drug discovery. One major problem is to obtain representative and well characterized tissues of high quality for analysis. We have used brain tissues from normal mice to study the effect of post mortem time (up to 32 h) and temperature (4 degrees C and room temperature) on protein expression patterns. A number of proteins were identified using mass spectrometry and potential markers were localized. One of the proteins identified, dihydropyrimidinase related protein-2 (DRP-2), occurs as multiple spots in two-dimensional electrophoresis gels. The ratio between the truncated form of DRP-2 (fDRP-2) and full length DRP-2 is suggested as an internal control that can be used as a biomarker of post mortem time and post mortem temperature between unrelated brain protein samples. Results of this study may be useful in future efforts to detect disease specific alterations in proteomic studies of human post mortem brain tissues.  相似文献   

13.
14.
Using immunological approaches and mass spectrometry, five proteins associated with metallothionein-3 in mouse brains have been identified. Metallothionein-3 and associated proteins were isolated using immunoaffinity chromatography over immobilized anti-mouse brain MT3 antibody. Proteins in the recovered pool were separated by SDS-polyacrylamide gel electrophoresis, and distinct bands were excised and the proteins digested using trypsin. Peptides were extracted and analyzed using electrospray ionization mass spectrometry. Initial identification was done comparing the identified peptide mass:charge ratios to the MASCOT database. Confirmation of proteins was accomplished by sequencing of selected peptides using tandem mass spectrometry and comparison to the MASCOT database. The proteins were heat-shock protein 84 (mouse variant of heat-shock protein 90), heat-shock protein 70, dihydropyrimidinase-like protein 2, creatine kinase, and beta actin. Independently using antibodies against metallothionein-3, creatine kinase, and heat-shock protein 84 showed that all three proteins were coimmunoprecipitated from whole mouse brain homogenates with each of the three antibodies. Mixing purified samples of metallothionein and human brain creatine kinase also generated a complex that could be immunoprecipitated either by anti-metallothionein-3 or anticreatine kinase antibody. These data are consistent with metallothionein-3 being present in the mouse brain as part of a multiprotein complex providing new functional information for understanding the role of metallothionein-3 in neuronal physiology.  相似文献   

15.
An important strategy for "shotgun proteomics" profiling involves solution proteolysis of proteins, followed by peptide separation using multidimensional liquid chromatography and automated sequencing by mass spectrometry (LC-MS/MS). Several protocols for extracting and handling membrane proteins for shotgun proteomics experiments have been reported, but few direct comparisons of different protocols have been reported. We compare four methods for preparing membrane proteins from human cells, using acid labile surfactants (ALS), urea, and mixed organic-aqueous solvents. These methods were compared with respect to their efficiency of protein solubilization and proteolysis, peptide and protein recovery, membrane protein enrichment, and peptide coverage of transmembrane proteins. Overall, approximately 50-60% of proteins recovered were membrane-associated, identified from Gene Ontology annotations and transmembrane prediction software. Samples extracted with ALS, extracted with urea followed by dilution, or extracted with urea followed by desalting yielded comparable peptide recoveries and sequence coverage of transmembrane proteins. In contrast, suboptimal proteolysis was observed with organic solvent. Urea extraction followed by desalting may be a particularly useful approach, as it is less costly than ALS and yields satisfactory protein denaturation and proteolysis under conditions that minimize reactivity with urea-derived cyanate. Spectral counting was used to compare datasets of proteins from membrane samples with those of soluble proteins from K562 cells, and to estimate fold differences in protein abundances. Proteins most highly abundant in the membrane samples showed enrichment of integral membrane protein identifications, consistent with their isolation by differential centrifugation.  相似文献   

16.
This study aims to evaluate differences in the expression of proteins present in the peritoneal fluid (PF) of women with and without endometriosis. PF samples were subjected to two-dimensional gel electrophoresis; protein spots of interest were identified by liquid chromatography tandem mass spectrometry. Several molecules had aberrant expression in PF of women with endometriosis; they may be useful for a better understanding of the pathogenesis of this disease.  相似文献   

17.
We applied proteomic technologies to analyze the human fetal brain. Such an analysis could provide us with important information on the development of the early neuronal life in healthy and diseased states. The proteins from the cerebellum of control subjects were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption/ionization-mass spectrometry on the basis of peptide mass fingerprinting, following in-gel digestion with trypsin. Approximately 3,000 spots, excised from three two-dimensional gels, were analyzed which resulted in the identification of about 1,700 proteins that were the products of 437 different genes. About half of them are enzyme subunits and are mainly localized in the cytosol and in mitochondria. The most frequently identified proteins in the various gels were heat shock proteins, house-keeping enzymes, such as ATP synthase chains, protein disulfide isomerase, and structural proteins, such as tubulin chains. Seven gene products were identified for the first time in the fetal brain. The other proteins had also been detected in other human samples which were analyzed in our laboratory. Most proteins were represented by multiple spots. In average, about 3-5 spots were detected per gene product. The fetal brain database includes proteins with important functions and also with unknown functions and represents today one of the largest two-dimensional databases for higher eukaryotic proteomes. It may be a useful tool in the investigation of protein changes in neurodegenerative diseases early in life.  相似文献   

18.
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is a chemical compound which is known to induce severe reproductive and developmental problems, immune system damage, and interference with regulatory hormones. To characterize changes in the expression of plasma proteins caused by exposure to TCDD, we analyzed plasma samples from workers at municipal incinerators using two-dimensional gel electrophoresis (2-DE). Proteins exhibiting differences in expression were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and electrospray ionization quadrupole (ESI-Q) TOF mass spectrometry. One newly expressed protein was identified as the adrenomedulin binding protein (AMBP). Seven overexpressed proteins were identified in this study, and the most overexpressed protein was identified as alpha-fetoprotein (AFP). In addition, we cultured HepG2 cells in the presence of TCDD, to determine the effects of TCDD on the AFP and albumin expression in mRNA and protein levels, via RT-PCR and Western blotting, respectively. TCDD treatment resulted in an increase in the mRNA and protein expression levels of AFP, but reduced albumin expression. According to our results, exposure to TCDD may induce liver disease or cancer, and the proteins identified in this study could help reveal the mechanisms underlying TCDD toxicity.  相似文献   

19.
A two-dimensional (2-D) liquid phase separation method, liquid isoelectric focusing followed by nonporous reversed-phase high performance liquid chromatography (HPLC), was used to separate proteins from human ovarian epithelial whole cell lysates. HPLC eluent was interfaced on-line to an electrospray ionization (ESI) time of flight (TOF) mass spectrometer to obtain accurate intact protein molecular weights (Mr). 2-D protein expression maps were generated displaying protein isoelectric point (pI) versus intact protein Mr. Resulting 2-D images effectively displayed quantitative differential protein expression in ovarian cancer cells versus non-neoplastic ovarian epithelial cells. Protein peak fractions were collected from the HPLC eluent, enzymatically digested, and analyzed by matrix-assisted laser desorption/ionization (MALDI) TOF-mass spectrometry (MS) peptide mass fingerprinting and by MALDI-quadrupole TOF tandem mass spectrometry peptide sequencing. Interlysate comparisons of differential protein expression between two ovarian adenocarcinoma cell lines, ES2 and MDAH-2774, and ovarian surface epithelial cells was performed. Five pI fractions from each sample were selected for comparative study and over 300 unique proteins were positively identified from the 2-D liquid expression maps using MS, which covered around 60% of proteins detected by on-line ESI-TOF-MS. This represents one of the most comprehensive proteomic analyses of ovarian cancer samples to date. Protein bands with significant up- or down-regulation in one cell line versus another as viewed in the 2-D expression maps were identified. This strategy may prove useful in identifying novel ovarian cancer marker proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号