首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in␣DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.  相似文献   

2.
The second enzyme in the methylerythritol phosphate pathway to isoprenoids, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267) mediates the transformation of 1-deoxy-D-xylulose 5-phosphate (DXP) into 2-C-methyl-D-erythritol 4-phosphate. Several DXR mutants have been prepared to study amino acid residues important in binding or catalysis, but in-depth studies of many conserved residues in the flexible loop portion of the enzyme have not been conducted. In the course of our studies of this enzyme, an analog of DXP, 1,2-dideoxy-D-threo-3-hexulose 6-phosphate (1-methyl-DXP), was found to be a weak competitive inhibitor. Using the X-ray crystal structures of DXR as a guide, a highly conserved tryptophan residue in the flexible loop was identified that potentially blocks the use of this analog as a substrate. To test this hypothesis, four mutants of the Synechocystis sp. PCC6803 DXR were prepared and a W204F mutant was found to utilize the analog as a substrate.  相似文献   

3.
The gene encoding the second enzyme of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway for isopentenyl diphosphate biosynthesis, 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase, was cloned and sequenced from Zymomonas mobilis. The deduced amino acid sequence showed the highest identity (48.2%) to the DXP reductoisomerase of Escherichia coli. Biochemical characterization of the purified DXP reductoisomerase showed a strict dependence of the enzyme on NADPH and divalent cations (Mn(2+), Co(2+) or Mg(2+)). The enzyme is a dimer with a molecular mass of 39 kDa per subunit and has a specific activity of 19.5 U mg protein(-1). Catalysis of the intramolecular rearrangement and reduction of DXP to MEP is competitively inhibited by the antibiotic fosmidomycin with a K(i) of 0.6 microM.  相似文献   

4.
The recently discovered 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of plastid isoprenoids (including carotenoids) is not fully elucidated yet despite its central importance for plant life. It is known, however, that the first reaction completely specific to the pathway is the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) into MEP by the enzyme DXP reductoisomerase (DXR). We have identified a tomato cDNA encoding a protein with homology to DXR and in vivo activity, and show that the levels of the corresponding DXR mRNA and encoded protein in fruit tissues are similar before and during the massive accumulation of carotenoids characteristic of fruit ripening. The results are consistent with a non-limiting role of DXR, and support previous work proposing DXP synthase (DXS) as the first regulatory enzyme for plastid isoprenoid biosynthesis in tomato fruit. Inhibition of DXR activity by fosmidomycin showed that plastid isoprenoid biosynthesis is required for tomato fruit carotenogenesis but not for other ripening processes. In addition, dormancy was reduced in seeds from fosmidomycin-treated fruit but not in seeds from the tomato yellow ripe mutant (defective in phytoene synthase-1, PSY1), suggesting that the isoform PSY2 might channel the production of carotenoids for abscisic acid biosynthesis. Furthermore, the complete arrest of tomato seedling development using fosmidomycin confirms a key role of the MEP pathway in plant development.  相似文献   

5.
Two Pseudomonas aeruginosa genes encoding the enzymes 1-deoxy-D-xylulose 5-phosphate (DXP) synthase and DXP reductoisomerase, both involved in the mevalonate-independent biosynthesis of isoprenoids, have been expressed as recombinant enzymes in Escherichia coli. The purified P. aeruginosa DXP reductoisomerase was inhibited by submicromolar concentrations of the antibiotics fosmidomycin and FR-900098 in a well established method. A novel and convenient spectrophotometric assay was developed to determine activity and inhibition of P. aeruginosa DXP synthase. Fluoropyruvate is described as a first inhibitor of DXP synthase.  相似文献   

6.
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors of carotenoids and other isoprenoids in bacteria and plant plastids. Despite recent progress in the identification of rate-determining steps, the relative contribution of most pathway enzymes to flux control remains to be established. In this work we investigated whether upregulated levels of hydroxymethylbutenyl diphosphate synthase (HDS) could increase the metabolic flux through this pathway, as judged by endpoint (carotenoid) measurements. Unlike other MEP pathway enzymes, however, increasing the levels of an active HDS protein in carotenoid-producing Escherichia coli cells and transgenic Arabidopsis thaliana plants did not result in an enhanced accumulation of MEP-derived isoprenoids. Our data suggest that enhanced flux through the MEP pathway for peak demand periods in bacteria and plastids does not require increased HDS activity.  相似文献   

7.
Carotenoids are isoprenoid pigments of industrial and nutritional interest. Although they are produced in non-carotenogenic Escherichia coli engineered with the appropriate biosynthetic genes, only a limited pool of their metabolic precursors is available in these bacteria. We have compared the production of carotenoids (lycopene) in strains in which the supply of precursors was enhanced either by upregulating the endogenous pathway via overexpression of deoxyxylulose 5-phosphate synthase (DXS) or by incorporating an exogenous MVA+ operon. In strains expressing DXS under the control of a leaky IPTG-inducible promoter, lycopene accumulation was increased up to 8-fold in the absence of inducer. Addition of IPTG, however, negatively affected lycopene production. Although induction of too high levels of the MVA+ operon enzymes also appeared to cause interference with cell metabolism, supplementation with mevalonate (to be metabolized into carotenoid precursors) resulted in a 10-fold increase in lycopene levels in cells with a near wild-type background. An additional 2-fold increase (up to 228 mg/l) was obtained using an engineered BL21 strain. These results confirm that the MVA+ pathway is most convenient to upregulate the production of carotenoids (lycopene) production in E. coli but that factors other than precursor supply should be considered for high pigment accumulation levels.  相似文献   

8.
The preparation of 1-deoxy-d-xylulose 5-phosphate, the key intermediate of MEP biosynthetic pathway for terpenoids by using recombinant 1-deoxy-d-xylulose 5-phosphate synthase of Rhodobacter capsulatus was optimized. The simple one-pot synthesis coupling with a newly established ion-exchange purification process affords the target compound with more than 80% yield and high purity (>95%). The procedure can also be employed to synthesize isotope labeled 1-deoxy-d-xylulose 5-phosphate by using isotope labeled starting materials.  相似文献   

9.
The dxr gene encoding the 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) from the cyanobacterium Synechocystis sp. PCC6803 was expressed in Escherichia coli to produce both the native and N-terminal histidine-tagged forms of DXR. The enzymes were purified from the cell extracts using either anion exchange chromatography or metal affinity chromatography and gel filtration. The purified recombinant native and histidine-tagged enzymes each displayed a single band on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels, corresponding to the calculated subunit molecular weights of 42,500 and 46,700, respectively. By native PAGE, both enzymes were dimers under reducing conditions. The kinetic properties for the enzymes were characterized and only minor variations were observed, demonstrating that the N-terminal histidine tag does not greatly affect the activity of the enzyme. Both enzymes had similar properties to previously characterized reductoisomerases from other sources. The Km's for the metal ions Mn2+, Mg2+, and Co2+ were determined for native DXR for the first time, with the Km for Mg2+ being approximately 200-fold higher than the Km's for Mn2+ and Co2+.  相似文献   

10.
Emerging resistance of human pathogens to anti-infective agents make it necessary to develop new agents to treat infection. The methylerythritol phosphate pathway has been identified as an anti-infective target, as this essential isoprenoid biosynthetic pathway is widespread in human pathogens but absent in humans. The first enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes the formation of DXP via condensation of D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate in a thiamine diphosphate-dependent manner. Structural analysis has revealed a unique domain arrangement suggesting opportunities for the selective targeting of DXP synthase; however, reports on the kinetic mechanism are conflicting. Here, we present the results of tryptophan fluorescence binding and kinetic analyses of DXP synthase and propose a new model for substrate binding and mechanism. Our results are consistent with a random sequential kinetic mechanism, which is unprecedented in this enzyme class.  相似文献   

11.
12.
13.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, EC: 1.1.1.267) is the second enzyme in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway, one of the two pathways in plants that can produce isoprenoids. The MEP pathway is the source of isoprene emitted from leaves, but rubber production is believed to result primarily from the mevalonic acid (MVA) pathway. Two cDNAs for DXR designated HbDXR1 and HbDXR2 were isolated from leaves and latex of rubber tree using RT-PCR based methods. Both cDNAs contain an open reading frame (ORF) of 1416bp encoding 471 amino acids with a molecular mass of about 51kDa. The deduced HbDXRs show extensive sequence similarities to that of other plant DXRs (73-87% identity). Molecular modeling revealed that the two HbDXRs contain all typical characteristics of DXR and share spatial structures, which are very similar to that of Escherichia coli DXR. Phylogenetic and DNA gel blot analyses suggested that a duplication of the DXR gene has occurred in the rubber tree. Semi-quantitative RT-PCR analysis showed that the HbDXR genes are differentially regulated in various tissues of the rubber tree. The HbDXR2 was more highly expressed in clone RRIM 600 than in the wild type, and this is consistent with higher rubber content of this clone. While 2-chloroethane phosphonic acid (ethephon) significantly increased latex yield, it only transiently induced the HbDXR2 gene. The expression of HbDXR2 in the latex suggests its important role in isoprenoid biosynthesis by substrate molecules, indicating that the MEP pathway may have some indirect roles in the biosynthesis of rubber.  相似文献   

14.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Mycobacterium tuberculosis, even though the mevalonate-independent pathway is the sole isopentenyl diphosphate biosynthetic pathway in this organism. Therefore, the enzymatic properties of recombinant IspC from M. tuberculosis were characterized. Rv2870c from M. tuberculosis converts 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol 4-phosphate in the presence of NADPH. The enzymatic activity is dependent on the presence of Mg(2+) ions and exhibits optimal activity between pH 7.5 and 7.9; the K(m) for 1-deoxyxylulose 5-phosphate was calculated to be 47.1 microM, and the K(m) for NADPH was 29.7 microM. The specificity constant of Rv2780c in the forward direction is 1.5 x 10(6) M(-1) min(-1), and the reaction is inhibited by fosmidomycin, with a 50% inhibitory concentration of 310 nM. In addition, Rv2870c complements an inactivated chromosomal copy of IspC in Salmonella enterica, and the complemented strain is sensitive to fosmidomycin. Thus, M. tuberculosis resistance to fosmidomycin is not due to intrinsic properties of Rv2870c, and the enzyme appears to be a valid drug target in this pathogen.  相似文献   

15.
Abstract The potent inhibition of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase by the broad-spectrum herbicide glyphosate ( N -[phosphonomethyl]glycine) was confirmed for the enzymes extracted from various bacteria, a green alga and higher plants. However, 5 out of 6 species belonging to the genus Pseudomonas were found to have EPSP synthases with a 50- to 100-fold decreased sensitivity to the inhibitor. Correspondingly, growth of these 5 species was not inhibited by 5 mM glyphosate, and the organisms did not excrete shikimate-3-phosphate in the presence of the herbicide.  相似文献   

16.
Yao H  Gong Y  Zuo K  Ling H  Qiu C  Zhang F  Wang Y  Pi Y  Liu X  Sun X  Tang K 《Journal of plant physiology》2008,165(2):203-213
As the second enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis, DXP reductoisomerase (DXR, EC: 1.1.1.267) catalyzes a committed step of the MEP pathway for camptothecin (CPT) biosynthesis. In order to understand more about the role of DXR involved in the CPT biosynthesis at the molecular level, the full-length DXR cDNA sequence (designated as CaDXR) was isolated and characterized for the first time from a medicinal Nyssaceae plant species, Camptotheca acuminata. The full-length cDNA of CaDXR was 1823 bp containing a 1416 bp open reading frame (ORF) encoding a polypeptide of 472 amino acids. Comparative and bioinformatic analyses revealed that CaDXR showed extensive homology with DXRs from other plant species and contained a conserved transit peptide for plastids, an extended Pro-rich region and a highly conserved NADPH binding motif in its N-terminal region owned by all plant DXRs. Phylogenetic analysis indicated that CaDXR was more ancient than other plant DXRs. Tissue expression pattern analysis revealed that CaDXR expressed strongly in stem, weak in leaf and root. CaDXR was found to be an elicitor-responsive gene, which could be induced by exogenous elicitor of methyl jasmonate. The functional color complementation assay indicated that CaDXR could accelerate the biosynthesis of carotenoids in the Escherichia coli transformant, demonstrating that DXP reductoisomerase plays an influential step in isoprenoid biosynthesis.  相似文献   

17.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

18.
Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.  相似文献   

19.
The Escherichia coli aroA gene which codes for the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase) has been cloned from the lambda-transducing bacteriophage lambda pserC. The gene has been located on a 4.7 kilobase pair PstI DNA fragment which has been inserted into the multiple copy plasmid pAT153. E. coli cells transformed with this recombinant plasmid overproduce EPSP synthase 100-fold. A simple method for the purification of homogeneous enzyme in milligram quantities has been devised. The resulting enzyme is indistinguishable from enzyme isolated from untransformed E. coli.  相似文献   

20.
李嵘  王喆之 《植物研究》2007,27(1):59-67
采用生物信息学的方法和工具对已在GenBank上注册的拟南芥、玉米、岩蔷薇、水稻、黄花蒿、亚麻等植物的萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸及氨基酸序列进行分析,并对其组成成分、转运肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明:该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无跨膜结构域,是一个具转运肽的亲水性蛋白,包括两个功能DXR结合motif及两个功能NADPH结合motif,α-螺旋和不规则卷曲是蛋白质二级结构最大量的结构元件,β-转角和β-折叠散布于整个蛋白质中,蛋白质的功能域在空间结构上折叠成“V”形,“V”形的两臂由N-端与C-端构成,“V”形的底部,是N 端臂与C-端臂的结合域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号