首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaudhary G  Gupta YK 《Life sciences》2001,68(18):2115-2121
Lithium is known to synergize the action of cholinomimetics in the CNS such that pilocarpine induces seizures in low concentration (1/13th of per se dose) in rats. The present study was undertaken to see if lithium priming also enhances the peripheral effects of acetylcholine and pilocarpine i.e. change in blood pressure in rats and contractions of the isolated guinea pig ileum. In anaesthetized rats the blood pressure was recorded from cannulated carotid artery connected through the pressure transducer to Coulbourn polygraph. The blood pressure response of pilocarpine was not different either in magnitude or in duration when administered 1, 2 and 4 h after lithium chloride (3 meq/kg) pretreatment as compared to the control. Similarly acetylcholine effect remained unchanged after lithium chloride priming. In the isolated guinea pig ileum experiments, ileum was incubated for 1 h in different concentrations of lithium chloride and effect on acetylcholine induced contractions were observed. Lithium in concentration of 2.8 x 10(-3) M had no effect on acetylcholine induced contractions while incubation with higher concentrations of 1.4 x 10(-2) M and 2.8 x 10(-2) M significant inhibition of acetylcholine contractions were observed. At this concentration, histamine induced contractions were also inhibited. The results indicate that lithium does not synergize the action of cholinomimetics in the periphery as that seen in the CNS. The inhibition of acetylcholine and histamine induced contractions in guinea pig ileum at high concentration of lithium seems to be non-specific effect.  相似文献   

2.
The interaction of papaverine and tiemonium alone or combined, with BaCL2 and histamine on guinea pig ileum and with acetylcholine on rat jejunum have been studied with the help of molecular pharmacology techniques. The competitive antagonist effects of tiemonium and the non competitive antagonist effects of papaverine are evidenced and shown to be strictly additive when the two drugs are combined. This reflects a sequential blockage of the effects of acetylcholine, histamine and barium ions at the smooth muscle level. No such antagonism has been previously described in the case of the interaction with barium chloride with any other combination of two spasmolytic drugs.  相似文献   

3.
Xenopus oocytes possess 'native' muscarinic receptors, which give rise to oscillatory chloride currents; similar responses are elicited by activation of foreign receptors to serotonin, glutamate and noradrenaline, expressed in oocytes after injection of messenger RNA from rat brain. When low concentrations of two agonists are applied together, the combined response is greater than would be expected from the sum of the responses to each agonist applied alone. Potentiation of acetylcholine by serotonin is blocked by the serotonin antagonist methysergide; conversely, the potentiation of serotonin by acetylcholine is blocked by the muscarinic antagonist atropine. This indicates that each agonist acts on a distinct receptor. The interactions between serotonin, acetylcholine and other agonists provide further evidence that the different receptors may all 'link in' to a common receptor-channel coupling system, in which phosphoinositide metabolism and calcium liberation lead to the opening of chloride channels in the oocyte membrane.  相似文献   

4.
Intracellular recordings were made from identified neurons in the suboesophageal ganglionic mass of the snail, Helix aspersa. The ionic mechanisms associated with acetylcholine excitation and inhibition, dopamine excitation and inhibition, gamma-aminobutyric acid (GABA) excitation and inhibition and serotonin excitation were investigated. Acetylcholine excitation was found to involve an initial increase in sodium conductance while acetylcholine inhibition was a pure chloride event which reversed at membrane potentials more negative than the chloride equilibrium potential. Dopamine excitation appeared to involve only an increase in sodium conductance while serotonin excitation involved an increase in conductance to both sodium and calcium ions. Dopamine inhibition was associated with an increase in potassium conductance but failed to reverse at membrane potentials more negative than the potassium equilibrium potential. GABA excitation involved conductance increases to both sodium and chloride ions while GABA inhibition was a pure chloride event. An attempt was made to estimate the degree of co-operativity of the putative transmitters with their receptors using log-log and Hill plots. The slopes of the line for the log-log plots for acetylcholine excitation and inhibition were 0.88 and 1.1, respectively, suggesting the interaction of one molecule of acetylcholine with the receptor. The slope of the log-log plot for dopamine inhibition was 0.46 while that for serotonin excitation was 0.75. The Hill plots for GABA excitation and inhibition were 1.64 and 1.42, respectively, suggesting that two molecules of GABA are required for receptor activation.  相似文献   

5.
It has been shown that the Epac1 and Epac2 protein inhibitor ESI-09 has no effect on the amplitude of contraction of aortic rings caused by the influence of serotonin, noradrenaline, or KCl depolarizing solution, but changes the kinetics of the contractile response. It was noted that in the presence of ESI-09 the curve of the relaxation phase in intact and deendothelized vessels moved to the left under the impact of serotonin or KCl and the phase of prolonged tonic contraction, which developed after the exposure to noradrenalin, was canceled. It was found that ESI-09 exerted different effects on the induced growth in the concentration of cytoplasmic Ca2+ in the aortic smooth muscle cells of rats depending on the agonist, whereas the selective inhibitor Epac2 ESI-05 has no effect on vascular contractility and calcium metabolism in the aortic smooth muscle of rats. The cAMP-independent participation of Epac1 in the formation of the contractile response to the influence of vasoconstrictor compounds was revealed.  相似文献   

6.
By means of histochemical and pharmacological analysis it is shown that acetylcholine has an inhibitive effect on regeneration in the planaria Dugesia tigrina. It seems that serotonin and adrenaline on the one hand, and acetylcholine on the other hand, play a role in a mechanism of regulation in which the latter plays a role in a negative feed-back process.  相似文献   

7.
Superfusion of isolated hemisected spinal cords of 9-13-day old rats with noradrenalin (NA) solution depolarized or hyperpolarized the motoneurons depending on the NA concentration. Both effects were the result of the direct action of NA on the motoneurons, for they were given in medium containing an excess of Mg and deficiency of Ca ions.a-Adrenoblockers depressed both the depolarizing and hyperpolarizing effects of NA. The depolarizing effect of dopamine on motoneurons was abolished in medium containing excess of Mg ions. Its direct hyperpolarizing action of motoneurons was suppressed by haloperidol but unchanged by phentolamine. The depolarizing effect of serotonin and its metabolites — mexamine, kynurenine, and 3-hydroxy-anthranilic acid — persisted in the presence of an excess of Mg and deficiency of Ca ions, but it was suppressed by deseryl (methysergide) and the benzyl analog of serotonin. The hyperpolarizing effect of serotonin at high concentrations (10–4–10–3 M), revealed in some experiments, was abolished in medium containing excess of magnesium ions in the presence of morphine.A. M. Gorkii Donetsk State Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 391–396, July–August, 1980.  相似文献   

8.
Differences in the distribution of neurons distinguished by their responses to serotonin and acetylcholine were found in the central nervous system ofHelix pomatia. When applied to the body of the neuron acetylcholine hyperpolarizes the cell more often than it depolarizes it, but depolarization predominates in some regions, e.g., on the dorsal surface of the visceral ganglion. In most cases serotonin stimulates activity and induces depolarization or the appearance of pacemaker oscillations of membrane potential. The oscillogenic effect of serotonin is characteristic, in particular, of white (peptidergic) neurons and the depolarization effect is characteristic of other neurons, including the paired giant metacerebral neurons which contain serotonin in their cytoplasm. Both effects failed to appear in sodium-free solution. A group of neurons in which hyperpolarization was observed in response to serotonin application was found in the visceral ganglion of hibernating snails. The same cells in active snails were stimulated by serotonin. A giant neuron with two variously located cholinergic structures is present on the ventral surface of the ganglion among this group of cells: acetylcholine hyperpolarized it when applied to the cell body but depolarized it when applied to the axon.  相似文献   

9.
TREATMENT of mice with arecoline or oxotremorine produces tremors accompanied by a transient increase in the brain level of acetylcholine lasting for 20 to 30 min1. We reported that administration of pilocarpine, whose peripheral cholinomimetic effects resemble those of arecoline, also markedly increases the level of brain acetylcholine in rats2,3. By contrast with other cholinomimetics, however, the pilocarpine-induced increase in acetylcholine lasts for several hours and is not accompanied by tremors. These findings suggest that arecoline and pilocarpine increase brain acetylcholine levels by different mechanisms. This study compares the effects of arecoline and pilocarpine administration on the conversion of choline-3H to acetylcholine-3H to elucidate the mechanism by which these drugs raise the brain acetylcholine level.  相似文献   

10.
Developments in the field of central neurotransmission indicate that amino acids serve as important and widespread transmitters throughout the central nervous system. There are increasing indications from recent experimental studies that several of the other central neurotransmitters may exert potent effects on central neurons by modulating the actions of amino acids. Noradrenaline and serotonin have received particular attention as potential modulators, and a wide variety of actions has been reported for them. Modulatory actions have been reported at both pre- and post-synaptic levels, including both short- and long-term effects and facilitation or inhibition of amino acid actions. Selectivity has been found both for specific receptor subtypes of the neuromodulator and for specific effects of amino acids. Examples of such selectivity are modification of actions of an amino acid with little effect on spontaneous activity or membrane properties of the target cell, or in comparison to the actions of other neurotransmitters, or even other selective amino acid analogs. Modulatory actions on amino acids have also been reported for several other neurotransmitters including acetylcholine and various peptides. Recent studies of angiotensin II demonstrate that when iontophoretically applied, it can potently and selectively block the depolarizing action of glutamate on locus coeruleus neurons. It is possible that physiological influences of these various transmitter substances are expressed through modification of amino acid actions, rather than through direct effects on central neurons.  相似文献   

11.
The studies on rats were carried out to determine dynamics of pO2 in the mucous membrane of the stomach under the effect of acetylcholine, norepinephrine, serotonin, histamine, prostaglandin E2 and ATP. As to the changes in pO2 the mediator substances were arranged as follows (from more intensive effect to less pronounced one): serotonin, acetylcholine, prostaglandin E2, norepinephrine, histamine and ATP. As to the duration of the action--PGE2 acetylcholine, serotonin, norepinephrine, ATP and histamine. Under the joint action of the mediator substances (serotonin, norepinephrine, histamine) with acetylcholine the effects of domination and modulation of acetylcholine effect are found.  相似文献   

12.
This study examined whether hypertension attenuated cell-to-cell communication in skeletal muscle resistance arteries. Briefly, arteries feeding the retractor muscle of normotensive and hypertensive hamsters were cannulated, pressurized, and superfused with a physiological saline solution. Cell-to-cell communication was functionally assessed by application of vasoactive stimuli (via micropipette) to a small portion of a feed artery while diameter at sites distal to the point of agent application was monitored. In keeping with past observations, discrete application of a smooth muscle depolarizing agent (phenylephrine or KCl) elicited a localized vasoconstriction that conducted poorly along feed arteries from normotensive hamsters. In contrast, acetylcholine, an agent known to hyperpolarize endothelial cells, elicited a vasodilation in normotensive feed arteries that conducted with little decay. Whereas smooth muscle depolarizing agents continued to elicit a localized response, conduction of endothelium-dependent vasodilation was attenuated in hypertensive hamsters. This decrease occurred in the absence of changes in vessel reactivity to intravascular pressure or to global application of phenylephrine, U-46619, or acetylcholine. We propose, on the basis of these physiological observations, quantitative mRNA measurements of connexins 37, 40, 43, and 45, and analysis of the literature, that an increase in endothelial-to-endothelial or smooth muscle-to-endothelial coupling resistance is likely responsible for hypertension-induced impairment in vascular communication. We hypothesize that this attenuation could contribute to the rise in total peripheral resistance characteristically observed in hypertension.  相似文献   

13.
It has been shown in experiments on an isolated spinal cord of rats that morphine, serotonin and gamma-aminobutyric acid (GABA) induce the depolarization of the central terminals of primary afferents. The depolarizing effect of morphine is mediated via interneurons, while the similar effect of serotonin and GABA is the result of a direct action on primary afferents. Subarachnoidal injection of morphine (0.1-0.6 mg), serotonin (0.1-0.3 mg) and GABA (0.3-0.6 mg) provokes analgesia upon electric stimulation of the tail root in rats.  相似文献   

14.
The effects of furosemide on action potentials and responses to several neurotransmitters have been studied in the neurons of Aplysia. Furosemide (10?7 and 10?3M) does not visibly affect the normal action potential in R15 neurons. However, when TTX (30μM) is used to block the sodium component in R15, the remaining spike (presumably the calcium component) is increased in amplitude in the presence of furosemide. Furosemide also alters transmitter-induced conductances. Furosemide greatly reduces the amplitude and shifts, in a depolarizing direction, the reversal potential of chloride-dependent responses to γ-aminobutyric acid (GABA) and acetylcholine (ACh). This suggests that furosemide both blocks the chloride channel and inhibits a chloride pump. ACh-induced sodium responses were also reduced by furosemide but to a lesser extent than chloride responses. The potassium response to ACh and a voltage-dependent calcium response to serotonin were not altered. These results indicate that furosemide could alter synaptic responses both presynaptically by enhancement of calcium flux during the action potential and postsynaptically by blockade of chloride and sodium conductances.  相似文献   

15.
The modifying effect of adding serotonin to the intra- and extracellular environment on the inward currents generated by the cell following intracellular application of acetylcholine was shown during studies on unidentified isolatedLimnaea stagnalis neurons using techniques of intracellular perfusion and voltage clamping. Serotonin inhibited response to achetylcholine in both cases in most of the test neurons. Serotonin intensified this response when applied to the intracellular environment and produced the opposite effect of reducing the amplitude of inward acetylcholine currents when administered extracellularly. Cyproheptadine, the serotonin receptor blocker, inhibited the enhancing effect of serotonin produced by adding this neurotransmitter to the intracellular fluid, but mimicked the inhibitory effects of serotonin on response to acetylcholine, whether added to the intra- or extracellular environment. Findings would suggest the presence of intracellular serotonin receptors in the mollusk neurons; one of their possible functions could be controlling the sensitivity of the cell surface cholinoreceptors.N. K. Koltsov Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 326–332, May–June, 1986.  相似文献   

16.
The effects of cholinergic agonists and antagonists on the release of ATP from isolated myenteric varicosities were studied using a firefly luciferin-luciferase technique. In a previous study, acetylcholine and nicotine released ATP from isolated myenteric varicosities, whereas the muscarinic agonist bethanechol did not. In the present study, release of ATP by acetylcholine was shown to be Ca2+ dependent. d-Tubocurarine competitively antagonized the release of ATP by either acetylcholine or nicotine. Maximal release of ATP by acetylcholine (10(-3) M) was approximately 24% that observed with the depolarizing drug veratridine (5 X 10(-5) M), suggesting either that not all of the varicosities capable of releasing ATP possess nicotinic receptors or that acetylcholine does not depolarize the varicosities to the degree that veratridine does. Tetrodotoxin slightly but significantly reduced ATP release induced by acetylcholine or nicotine, indicating some involvement of Na+ channels in the release process. Finally, 6-hydroxydopamine pretreatment produced a 48% reduction in the acetylcholine-evoked release of ATP, suggesting that much, but possibly not all, of the ATP release occurs from noradrenergic varicosities present in the preparation.  相似文献   

17.
Abstract: The acetylcholine transporter exhibits such low affinity and specificity for acetylchoiine that it appeared possible it could fail to select against other neurotransmitters. Potential interactions of classical noncholinergic neurotransmitters with cholinergic synaptic vesicles purified from electric organ were studied. No active transport of [3H]serotonin, [3H]noradrenaline, or [3H]glutamate occurred. Serotonin, noradrenaline, and N -acetylaspartyl glutamate inhibited active transport of [3H]acetylcholine by the vesicles. Dopamine previously had been shown to inhibit transport. Glutamate and γ-aminobutyric acid were shown here not to inhibit active transport of [3H]-acetylcholine. Noradrenaline was competitive with respect to [3H]acetylcholine in this effect. Serotonin, noradrenaline, and dopamine inhibited binding of [3H]vesamicol to the vesicles, and dopamine was a competitive inhibitor of the binding of this allosteric ligand of the acetylcholine transporter. The results indicate that the acetylcholine transporter does not transport any other classical neurotransmitter, but serotonin, noradrenaline, and dopamine bind to the acetylcholine site.  相似文献   

18.
1. The effect of serotonin on the acetylcholine (ACh) response has been studied by means of voltage clamp and intracellular perfusion in unidentified isolated neurons from parietal and visceral ganglia of Lymnaea stagnalis. 2. In most cells studied serotonin added to the internal or external solution decreases the response to ACh. 3. In other neurons serotonin added to the intracellular solution increases the response to ACh; when it is added extracellularly it produces the opposite effect on the same cells. 4. The decreasing effect of serotonin on ACh currents is mimicked by cyproheptadine, an antagonist of serotonin receptors, and by the intracellular application of cyclic AMP (cAMP) forskolin. 5. The enhancing effect of intracellularly applied serotonin on ACh currents is blocked by cyproheptadine and is not obtained by the intracellular administration of cAMP and forskolin. In some cells the enhancing effect of serotonin appears after forskolin. 6. The results suggest a modulating effect of serotonin on cholinergic synaptic transmission in the nervous system of mollusks. The possible existence of intracellular serotonin receptors is discussed.  相似文献   

19.
In isolated snail brain, the role was studied of cyclic adenosine monophosphate (cAMP) in providing plastic properties of electro-excitable neuronal membranes of two types, habituating and non-habituating to rhythmic intracellular stimulation with depolarizing electric pulses. It has been shown that at high level of cAMP in the cell maintained with administration of dibutyryl-cAMP and (or) blockaders of phosphodiesterase in incubation medium, habituating cells lose their ability of habituation to stimulation. There is also no habituation in the presence of serotonin: serotonin effect is removed by imidazol, activator of phosphodiesterase. Imidazol promotes the development of habituation of cells, initially non-habituating to stimulation. Data are obtained on connection of Ca2+ effects and cAMP metabolism in habituating cells. On the basis of the obtained data it is suggested that the cyclase system controls plastic properties of neurones of both types, and reduction of cAMP content in the cell apparently mediates the above mentioned Ca-K-mechanism of habituation.  相似文献   

20.
Involvement of the adenylate cyclase system in cholinergic modulation of synaptic transmission was investigated in area CA1 in rat hippocampal slices. Microiontophoretic application of acetylcholine as well as addition of carbachol to the superfusate or of tolbutamide (a cAMP-dependent protein kinase inhibitor) depressed transmission at synapses formed by Schaffer collaterals and commissural fibers with dendrites of pyramidal cells belonging to hippocampal area CA1. Both numbers of free quanta of neurotransmitter and the likelihood of transmitter release decreased following carbachol action. Atropine suppressed the inhibitory action of carbachol on synaptic transmission. Dibutyryl cAMP and forskolin increased the amplitude of synaptic potentials and suppressed, either partially or in full, the inhibitory effects of cholinomimetics on synaptic potentials. It was concluded that cholinomimetics and activators of the adenylate cyclase system exert opposing effects on neurotransmission at synapses formed between Schaffer collaterals/commissural fibers and dendrites of pyramidal neurons belonging to hippocampal area CA1.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 435–442, July–August, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号