首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

2.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

3.
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.  相似文献   

4.
Abalone sperm adenylate cyclase activity is particulate in nature and displays a high Mg2+-supported activity (Mg2+/Mn2+ = 0.8) as compared to other sperm adenylate cyclases. Approximately 90% of the enzyme activity in crude homogenates is inhibited by EGTA in a concentration-dependent manner which is overcome by added micromolar free Ca2+. The EGTA-inhibited Ca2+-stimulated enzyme activity is also inhibited by phenothiazines. Added calmodulin, however, has no effect on enzyme activity prepared from crude homogenates. Preparation of a twice EGTA-extracted 48,000 X g pellet fraction yields a particulate enzyme activity that can be stimulated 10-65% by added calmodulin in the presence of micromolar free Ca2+. Detergent extraction (1% Lubrol PX) of the EGTA-washed 48,000 X g pellet solubilizes 2-5% of the total particulate adenylate cyclase activity, and this solubilized enzyme is activated up to 125% by calmodulin. The ability of the different enzyme preparations to be stimulated by calmodulin is inversely proportional to the endogenous calmodulin concentration. Calmodulin stimulation of the Lubrol PX-solubilized enzyme is specific to this Ca2+-binding protein and is mediated as an effect on the velocity of the enzyme. This stimulation is completely Ca2+ dependent and is fully reversible. These data suggest that the control of sperm cAMP synthesis by changes in Ca2+ conductance may be mediated via this Ca2+-binding protein.  相似文献   

5.
Particulate guanylate cyclase from bovine adrenal cortex can be stimulated by ANF. A 2-fold stimulation of the enzyme was obtained with 100 nM ANF and a half-maximal stimulation, with a 5 nM dose. The stimulation by ANF persisted for at least 30 min. Various detergents, such as Triton X-100, Lubrol PX, cholate, CHAPS, digitonin and zwittergent, stimulated several-fold the activity of particulate guanylate cyclase. However, only Triton X-100 dispersed particulate guanylate cyclase without affecting its response to ANF. The dose-response curve of ANF stimulation of the particulate and the Triton X-100 dispersed enzyme was similar. The dispersion of a fully responsive guanylate cyclase to ANF will help us to uncover the type of interactions between guanylate cyclase and ANF. It will also be used as a first step for the purification of an ANF-sensitive particulate guanylate cyclase.  相似文献   

6.
Particulate guanylate cyclase from rat lung was stimulated less than 2-fold by agents capable of activating the soluble guanylate cyclase, including sodium nitroprusside, MNNG, azide and hydroxylamine. The action of the first two agents was potentiated by 10 mM 2-mercaptoethanol, and that of the last two by catalase. Pretreatment of the particulate enzyme with the polyene antibiotic, filipin, potentiated the stimulatory effects of the activators, activity with 1 mM nitroprusside in the presence of 2-mercaptoethanol being increased 10.4-fold over basal. The enzyme treated with filipin and nitroprusside showed less specificity for Mn2+, as it was able to use Mg2+ as sole cation more efficiently than the untreated enzyme. Since filipin is known to alter membrane fluidity by interacting with membrane cholesterol, it is proposed that the activity of membrane bound guanylate cylase may be regulated in part by the fluid state of the phospholipid matrix.  相似文献   

7.
Stimulation of guanylate cyclase of fibroblasts by free fatty acids.   总被引:8,自引:0,他引:8  
The membranous guanylate cyclase of Balb 3T3 fibroblasts was stimulated by a fraction of calf serum extracted by ether. Stimulation was observed with Mg2+ as the only bivalent cation in the presence of Lubrol PX. The activator co-chromatographed with free fatty acids, and several of these were found to stimulate guanylate cyclase. Among the saturated fatty acids, myristic acid had the highest activity. Stimulating activity diminished as the hydrocarbon chain of the fatty acid was lengthened or shortened. Introduction of an unsaturated bond enhanced the activation by the longer fatty acids. This pattern of specificity is similar to that observed for the effect of fatty acids on many other membranous functions. Under appropriate conditions fatty acids were found to stimulate guanylate cyclase activity in the absence of Lubrol PX. The relationship among the effects of Mg2+, Mn2+, Lubrol PX, and fatty acids on enzyme activity was examined. On the basis of these studies, it appears that fatty acids stimulate the enzyme by a mechanism different from nonionic detergents or Mn2+.  相似文献   

8.
Adenylate cyclase was extracted from the rat uterus with Lubrol PX in a form which remained soluble following centrifugation for 60 min at 100,000g. The soluble enzyme was stimulated by both Mn+2 and by guanyl-5'-yl-imidodiphosphate (Gpp(NH)p), indicating that both the catalytic subunit (C) and the guanyl nucleotide-binding coupling factor (N) had been extracted. Catalytic activity was bound by a GTP-affinity resin only under conditions which resulted in irreversible activation of the native (particulate) form of the enzyme and could be eluted under acidic conditions shown to reverse the activated state. The S020,w of the soluble enzyme in both its activated and unactivated state was determined by linear sucrose gradient centrifugation. Activation by prolonged treatment with Gpp(NH)p did not alter the S020,w of the enzyme whether treatment was carried out before or after solubilization. The chaotrope LiBr (0.4 M) reduced the S020,w of the soluble enzyme but its smaller size was still not altered by activation with Gpp(NH)p. These results indicate that most adenylate cyclase activity in uterine membranes exists as a preformed complex between the catalytic subunit and the coupling factor: NC. The existence of this complex explains some of the temperature-dependent properties previously described for this form of the enzyme and suggests that dissociable interactions between the subunits do not play a role in the activation of C by guanyl nucleotides.  相似文献   

9.
1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins.  相似文献   

10.
Sodium arachidonate and sodium oleate increased particulate guanylate cyclase activity from homogenates of Balb 3T3 cells or rat liver. The fatty acids were about equipotent and were maximally effective at about 100 μm concentrations. Higher concentrations were less effective or inhibitory. Activation was similar in an air or nitrogen atmosphere and was unaltered by KCN, aspirin, or indomethacin. The dose-response curve was shifted to the right when arachidonate was preincubated prior to its addition to guanylate cyclase assays. Agents that facilitate fatty acid oxidation and the formation of malonyldialdehyde during preincubation such as glutathione, hemoglobin, Mn2+, Fe3+, or lipoxygenase shifted the dose-response curve further to the right. In contrast, agents that decreased or prevented arachidonate oxidation and malonyldialdehyde formation during preincubation such as butylated hydroxyanisole, propyl gallate, hydroquinone, and diphenylfuran prevented the shift in the dose-response curve or in some instances shifted the dose-response curve to the left. Activation of guanylate cyclase by arachidonate was reversed by the addition of lipoxygenase to incubations. These studies indicate that unsaturated fatty acids and not their oxidation products activate particulate enzyme from Balb 3T3 cells. The mechanism of fatty acid activation appears to be different from activation by nitro compounds. Fatty acids but not nitro compounds activated fibroblast preparations, and the effect of fatty acids in contrast to the activation by nitroprusside in liver preparations was not prevented with Lubrol PX.  相似文献   

11.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

12.
Naturally occurring cholesterol-sequestering agents, digitonin, cereolysin and streptolysin O, activated rat lung particulate guanylate cyclase. Particulate enzyme treated with digitonin and cereolysin was further activated by sodium nitroprusside. Digitonin and cereolysin lowered sodium nitroprusside activation of the rat lung soluable guanylate cyclase. Activation of the particulate guanylate cyclase by digitonin and cereolysin was not due to the solubilization of the enzyme.  相似文献   

13.
A guanylate cyclase was identified in cilia from rat and pig olfactory epithelia. Enzyme activities were 200-250 and 90-100 pmol/min.mg-1, respectively. Activity required the presence of non-ionic detergents, e.g., 0.1% Lubrol PX. MnGTP, not MgGTP was used as a substrate. Furthermore, 0.9 mM free Mn2+ was necessary for optimal activity indicating a regulatory site for a divalent cation. The guanylate cyclase displayed sigmoidal Michaelis-Menten kinetics suggesting cooperativity between MnGTP and enzyme. S0.5 was 160 microM MnGTP. The Hill coefficient of 1.7 indicates that more than one class of substrate-binding sites interact in a positive cooperative manner. ATP inhibited the enzyme and linearized plots of substrate kinetics with MnGTP. SH-Blocking agents reversibly inhibited enzyme activity. Sodium azide and nitroprusside were without effect as were several odorants. A guanylate cyclase activity in cilia from tracheal tissue had properties similar to the olfactory enzyme.  相似文献   

14.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

15.
Inhibition of soluble guanylate cyclase by bovine serum albumin   总被引:1,自引:0,他引:1  
Bovine serum albumin (BSA) and to a lesser extent beta-lactoglobulin produced concentration-dependent inhibition of the guanylate cyclase activity in supernatant fraction and partially purified enzyme (PPE) prepared from rat lung homogenates. Ovalbumin had little effect. Some activity was lost when PPE was applied to a BSA-agarose column, however the loss disappeared when the enzyme reaction mixture contained Lubrol PX. Also, BSA no longer inhibited PPE after BSA-agarose treatment. BSA inhibition of PPE was not apparent when activity was maximally stimulated by arachidonate. These data were interpreted as indicating that the enzyme had bound to it an amphiphilic activator, possibly a fatty acid, the removal of which by BSA decreased activity.  相似文献   

16.
To determine whether the lectin-induced inhibition of plasma membrane 5′-nucleotidase resulted from direct interaction of the lectin with the enzyme or indirectly from a membranous change due to lectin binding to other membrane glycoproteins, the enzyme was purified and its sensitivity tested in the absence of other membrane components. A 5000 fold purification was achieved by solubilization in Lubrol PX followed by gel filtration (Sephadex G-100), anion exchange (DEAE-Biogel A) and selective adsorption (hydroxylapatite) chromatography. The purified enzyme was even more sensitive to inhibition by high concentrations of concanavalin A, wheat germ agglutinin or Rincinus communis agglutinin than was the membrane-bound enzyme indicating that inhibition is due to direct binding of the lectins to the glycoprotein enzyme itself. Divalent succinyl Con A inhibited neither form of the enzyme suggesting the need for crosslinking for inhibition by the native lectin. The purified enzyme could not be activated by low concentrations of lectins which stimulated the membrane bound enzyme.  相似文献   

17.
Microsomal epoxide hydrolase was purified from rat liver, and different fractions of the purified enzyme, which varied in their contents of phospholipid, were obtained by ion-exchange chromatography. One fraction (A), which did not bind to CM-cellulose, had a high phospholipid content, and a second fraction (B), which was eluted from CM-cellulose at high ionic strength, had a low phospholipid content. Removal of most of the phospholipid from fraction A altered its chromatographic behaviour. When the delipidated material was re-applied to CM-cellulose, most of the enzyme bound to the cation-exchanger. The specific activities of all the fractions described (with styrene epoxide [(1,2-epoxyethyl)benzene] as substrate) were altered by adding the non-ionic detergent Lubrol PX or phospholipid. Lubrol PX inhibited enzyme activity, and phospholipid reversed this inhibition. The various enzyme fractions isolated appeared to be different forms of the same protein, as judged by their minimum Mr values and immunochemical properties. These results indicate that different fractions of epoxide hydrolase isolated by ion-exchange chromatography probably are not different isoenzyme forms.  相似文献   

18.
Activation of adenylate cyclase by forskolin in rat brain and testis   总被引:2,自引:0,他引:2  
Detergent-dispersed adenylate cyclase from rat cerebrum was detected in two components, one sensitive to Ca2+ and calmodulin and another sensitive to fluoride or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). The enzyme activity of both components was markedly augmented by forskolin assayed in the presence or absence of other enzyme activators (e.g., NaF, Gpp(NH)p, calmodulin). The catalytic subunit fraction in which G/F protein was totally lacking was also activated by forskolin. During 1-35 days of postnatal development, the basal adenylate cyclase activities in either cerebrum and cerebellum particulate preparations progressively increased. While the fluoride sensitivity of the cerebrum and cerebellum enzyme increased during postnatal development, the responsiveness to forskolin remained unaltered. There was no enhancement of soluble adenylate cyclase (from rat testis) by forskolin under the assay conditions in which there was a marked stimulatory action on the particulate enzyme. The results seen with the solubilized enzyme, with either Lubrol PX or cholate, indicate that the effects of forskolin on the cyclase do not require either G/F protein or calmodulin and the results of our study of brain enzymes support this view. Data on soluble testis cyclase (a poor or absent response to forskolin by this enzyme) imply that it lacks a protein (other than the catalytic unit) which could confer greater stimulation. The present results do not rule out an alternative explanation that forskolin stimulates adenylate cyclase by a direct interaction with the catalytic subunit, if the catalytic proteins do differ widely in various species of cells and their response to this diterpene.  相似文献   

19.
Interactions of certain naturally occurring, amphiphilic polypeptides with membranes were investigated. Mastoparan (wasp venom toxin), melittin (bee venom toxin), cardiotoxin (cobra venom toxin), and polymyxin B (antibacterial antibiotic) inhibited protein kinase C stimulated by phosphatidylserine bilayer or arachidonate monomer and blocked binding of [3H] phorbol 12,13-dibutyrate to protein kinase C in the presence of phosphatidylserine bilayer, with IC50 values (concentrations causing 50% inhibition) of 1-8 microM. Mastoparan and polymyxin B were much less inhibitory (IC50, 10-20 microM), whereas melittin and cardiotoxin were similarly inhibitory (IC50, 1-4 microM), when protein kinase C was activated instead by synaptosomal membrane. Kinetic analysis indicate that mastoparan inhibited protein kinase C, assayed using phosphatidylserine or synaptosomal membrane as the phospholipid cofactor, competitively with the phospholipid cofactor, in a mixed manner with CaCl2 or diacylglycerol, noncompetitively with histone, and uncompetitively with ATP, with apparent Ki values of 1.6-18.7 microM. Inhibition of Na,K-ATPase in the membrane by these polypeptides had relative potencies different from those for their inhibition of protein kinase C activated by the same membrane preparation; mastoparan and melittin inhibited the two activities with comparable potencies, but polymyxin B and cardiotoxin were far less effective in inhibiting Na,K-ATPase. The same relative inhibitory potencies of the polypeptides (melittin greater than mastoparan greater than polymyxin B) for inhibition of Na,K-ATPase were also noted for their inhibition of Ca2+/calmodulin-dependent protein kinase II, 86Rb uptake (Na+ pump) by HL60 cells and the phorbol ester-induced differentiation of the leukemia cells. These findings were consistent with discrete interactions of the polypeptides with functionally distinct sites on the membrane, leading to differential inhibition of biological activities associated with the membrane. Actions of certain polypeptides appeared to be more specific compared to those of lipid second messengers such as lyso-phosphatidylcholine and sphingosine, and the antineoplastic ether lipid analogs such as 1-O-octadecyl-2-methyl-rac-glycero-3-ophosphocholine.  相似文献   

20.
Mg2+-dependent activity of intestinal brush border guanylate cyclase was stimulated 4-5-fold by 50-100 microM hemin. Higher concentrations were inhibitory. In the presence of 25% dimethyl sulfoxide, which stimulated activity 9-times, 50 microM hemin further increased activity 1.7-fold. However, when activity was stimulated 32-fold by the Escherichia coli heat-stable enterotoxin, or 26-fold by Lubrol PX, hemin produced only concentration-dependent inhibition. The first type of activation was more sensitive to hemin than the second. Reduction of hemin by dithiothreitol eliminated stimulation of basal activity, while inhibition of Lubrol PX-stimulated activity remained. Protoporphyrin IX also had no effect on basal activity, however, it inhibited enterotoxin- and Lubrol PX-stimulated activities similarly, but only to half the extent of hemin. Substitution of Mn2+ for Mg2+ elevated basal activity 15-fold, and this Mn2+-dependent activity was inhibited by hemin. Mn2+-dependent activity was stimulated (43%) by enterotoxin, however, the stimulated activity was more sensitive to hemin inhibition than the basal Mn2+-dependent activity and both inhibition curves were congruent above 50 microM hemin. Hemin inhibition of Lubrol PX-stimulated activity was much less with Mn2+ than with Mg2+. These results were interpreted as suggesting two sites of hemin inhibition; on an inhibitory regulator and on the enzyme. We also found that the secretory effect of enterotoxin in the suckling mouse bioassay was reduced 56% by the oral administration of hemin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号