首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A new sensitive and specific method for the detection of Erwinia amylovora was developed. The method is based on the detection of a chromosomal DNA sequence specific for this bacterial species and enables the detection of E. amylovora pathogenic strains, including the recent isolates that lack plasmid pEA29 and thus cannot be detected by the previously popular PCR methods based on the detection of this plasmid. Species-specific random amplified polymorphic DNA (RAPD) marker was identified, cloned, and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. The E. amylovora specific sequence, 1269 bp long, was amplified in polymerase chain reaction and detected with electrophoresis in agarose gel stained with ethidium bromide. Amplification with other bacterial species did not produce any PCR product detectable by electrophoresis. Belonging of the E. amylovora specific sequence to chromosomal DNA was confirmed by computer analysis of the E. amylovora genome. A consistent sensitivity limit of the method was 3 CFU/reaction, and in some cases it was possible to detect 0.6 CFU/reaction. Due to its high sensitivity and specificity, our method of E. amylovora detection is currently the most reliable, taking into account that the reliability of PCR methods based on plasmid pEA29 has been compromised by the isolation of pathogenic E. amylovora strains that lack this plasmid.  相似文献   

2.
There are two approaches in detection of bacterium Erwinia amylovora by PCR. One is based on detection of plasmid pEA29 and the other is based on detection of a chromosomal DNA sequence, specific for E. amylovora, in a sample. Since pathogenic strains without pEA29 have been isolated from the environment, methods based on this plasmid have been compromised and PCR methods based on chromosomal DNA species specific sequences became only reliable methods. PCR method with chromosomal primers FER1-F and FER1-R is currently the most reliable method due to its high sensitivity and specificity. The goal of this research is to make a significant improvement of the method by optimization of PCR in application of hot start DNA Taq polymerase, instead of wax, to obtain a hot start reaction. This enzyme, which is currently widely applied, can provide simpler achievement of hot start, saving labor and time and decreasing possibility of cross contamination of samples. Experiments showed that simple replacement of a regular recombinant Taq DNA polymerase by a hot start Taq DNA polymerase leads to complete failure of the reaction. Many optimization experiments had to be carried out to obtain an operational and reliable PCR which simultaneously has high sensitivity and specificity. Content of the reaction mixture, as well as temperature and time parameters of PCR, were significantly changed to achieve proper optimization.  相似文献   

3.
There are two approaches in detection of bacterium Erwinia amylovora by PCR. One is based on detection of plasmid pEA29 and the other is based on detection of a chromosomal DNA sequence, specific for E. amylovora, in a sample. Since pathogenic strains without pEA29 have been isolated from the environment, methods based on this plasmid have been compromised and PCR methods based on chromosomal DNA species specific sequences became only reliable methods. PCR method with chromosomal primers FER1-F and FER1-R is currently the most reliable method due to its high sensitivity and specificity. The goal of this research is to make a significant improvement of the method by optimization of PCR in application of hot start DNA Taq polymerase, instead of wax, to obtain a hot start reaction. This enzyme, which is currently widely applied, can provide simpler achievement of hot start, saving labor and time and decreasing possibility of cross contamination of samples. Experiments showed that simple replacement of a regular recombinant Taq DNA polymerase by a hot start Taq DNA polymerase leads to complete failure of the reaction. Many optimization experiments had to be carried out to obtain an operational and reliable PCR which simultaneously has high sensitivity and specificity. Content of the reaction mixture, as well as temperature and time parameters of PCR, were significantly changed to achieve proper optimization.  相似文献   

4.
Aims:  To develop and evaluate a new and reliable real‐time PCR detection protocol on chromosomal DNA of the contagious plant pathogenic bacterium Erwinia amylovora, the causal agent of fire blight. Methods and Results:  A Taqman® minor‐groove‐binder real‐time PCR assay targeting a hypothetical protein coding gene of Erw. amylovora has been developed. Colony PCR of 113 bacterial strains from different taxa was performed to prove specificity. Serial decimal dilutions of Erw. amylovora showed a consistent detection sensitivity of 2 bacterial units per μl. All strains of Erw. amylovora could be identified, and there were no cross‐reactions with matrices or other bacteria also testing naturally contaminated samples. Conclusions:  Rapid, reliable and sensitive detection of Erw. amylovora is important to avoid the spread of the disease within orchards, and the distribution by contaminated plant material or vectors carrying the pathogen. The selected conserved target gene allows relative quantitative detection of Erw. amylovora from different sources and host taxa. The newly developed protocol also enables the detection of recently found natural strains that lack the species‐specific plasmid pEA29, which was so far widely used as target for detection and identification of this plant pathogen by PCR. Significance and Impact of the Study:  This study demonstrates that the newly developed and evaluated real‐time assay can specifically be used for identifying all known strains of the EU quarantine plant pathogen Erw. amylovora. Low concentrations of the bacteria can be detected and relatively quantified using a different target area than other real‐time PCRs designed so far.  相似文献   

5.
One hundred and thirty strains of Erwinia amylovora recovered from Spanish foci of fire blight from 1995 to 2000 were characterised and compared to reference strains from different sources and origins. Their rapid identification was performed by double antibody sandwich indirect (DASI) ELISA, using specific monoclonal antibodies against E. amylovora, and molecular confirmation by PCR using primers specific to the native plasmid pEA29. The Spanish strains of E. amylovora grew on different general and selective media producing typical colonies, except one of them that was deficient in levan production, whereas none of them grew on minimal agar medium with copper sulphate and low content of asparagine. All of them were susceptible to tetracycline, streptomycin, kasugamycin and oxolinic acid. Biochemical characterisation of selected strains by API 20E system revealed a great homogeneity, with 80% of the Spanish strains showing one of the two majority API 20E profiles described for E. amylovora, and the remaining strains showing minor differences. Pathogenicity on pear fruits and hypersensitivity reaction was confirmed, but a delayed reaction was observed for two Spanish strains. This is the first characterisation of a large collection of Spanish strains of E. amylovora.  相似文献   

6.
A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity.  相似文献   

7.
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.  相似文献   

8.
All strains of Erwinia amylovora characterized carry a medium-size plasmid of 29 kilobases (pEA29). We mapped this plasmid with various restriction enzymes, cloned the whole DNA into an Escherichia coli plasmid, and subcloned restriction fragments. These DNA species were used for identification of E. amylovora after handling of strains in the laboratory and also in field isolates. About 70 strains of E. amylovora and 24 strains from nine other species, mainly found in plant habitats, were checked in a colony hybridization test. Virulent and avirulent E. amylovora strains reacted positively, whereas the other species were negative. Apart from the hybridization assay, the positive strains were additionally tested for ooze production on rich agar with 5% sucrose and on immature-pear slices. Unspecific background hybridization of non-E. amylovora strains found for hybridization with the whole E. amylovora plasmid was almost eliminated when a 5-kilobase SalI fragment from pEA29 was used as a probe and when the washes after the hybridization procedure were done with high stringency. Under these conditions, E. amylovora could be readily identified from field isolates.  相似文献   

9.
A polymerase chain reaction (PCR) method was performed for rapid and sensitive detection of pathogenic Vibrio trachuri isolated from cultured Japanese horse mackerel. A set of primers was selected from the base sequence of the Pst I fragment of T9210 chromosomal DNA and used for PCR detection of T9210. This PCR specifically amplified the DNAs from V. trachuri T9210, T9213, and T9216 but not of those other bacterial strains. PCR using a Pst I-1 primer set made it possible to detect 100 fg of T9210 DNA. The PCR method reported here may be useful for detection and identification of V. trachuri pathogenic to Japanese horse mackerel.  相似文献   

10.
Erwinia amylovora, the causative agent of fire blight, was identified independently from the common plasmid pEA29 by three different PCR assays with chromosomal DNA. PCR with two primers was performed with isolated DNA and with whole cells, which were directly added to the assay mixture. The oligonucleotide primers were derived from the ams region, and the PCR product comprised the amsB gene, which is involved in exopolysaccharide synthesis. The amplified fragment of 1.6 kb was analyzed, and the sequence was found to be identical for two E. amylovora strains. The identity of the PCR products was further confirmed by restriction analysis. The 1.6-kb signal was also used for detection of the fire blight pathogen in the presence of other plant-associated bacteria and in infected plant tissue. For further identification of isolated strains, the 16S rRNA gene of E. amylovora and other plant-associated bacteria was amplified and the products were digested with the restriction enzyme HaeIII. The pattern obtained for E. amylovora was different from that of other bacteria. The sequence of the 16S rRNA gene was determined from a cloned fragment and was found to be closely related to the sequences of Escherichia coli and other Erwinia species. Finally, arbitrarily primed PCR with a 17-mer oligonucleotide derived from the sequence of transposon Tn5 produced a unique banding pattern for all E. amylovora strains investigated. These methods expand identification methods for E. amylovora, which include DNA hybridization and a PCR technique based on plasmid pEA29.  相似文献   

11.
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.  相似文献   

12.
Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.  相似文献   

13.
Enterobacter sakazakii has recently been identified as an opportunistic pathogen. The current culture-dependent detection methods for these bacteria are time-consuming and in this study a PCR method for the detection of E. sakazakii in South African food products, including an internal amplification control (IAC) was developed. DNA was isolated and amplified from the products and they were plated on selective growth media after pre-enrichment and enrichment in Enterobacteriaceae enrichment broth. Four of the 22 products tested positive for the presence of E. sakazakii, confirmed by PCR detection and growth on selective media. The PCR method proved effective in detecting E. sakazakii in South African products after three days and could serve as an alternative for traditional microbiological techniques.  相似文献   

14.
Agrobacterium vitis strain E26 is a promising biocontrol agent of grapevine crown gall, an economically important disease of grape worldwide. In this report, we developed a Plating‐PCR method that allows specific detection and quantification of E26 by combining classical microbiological techniques with molecular tools. Random amplified polymorphic DNA fingerprints were used to differentiate E26 from other A. vitis strains. A differentially amplified fragment from E26 was sequenced and characterized as a sequence characterized amplified region (SCAR) marker. Two primer pairs were then designed and evaluated for their specificity against E26. One of the two SCAR primer pairs, 740F/R, was further selected for specific detection of strain E26. A plating assay coupled to PCR with the SCAR primers 740F/R allowed the assessment of population dynamics of E26 in non‐sterile grape rhizosphere soil under controlled conditions.  相似文献   

15.
Summary A new method for the diagnosis of the plant pathogenic fungus Phoma tracheiphila has been developed. The method takes advantage of the enzymatic amplification of a specific 102 bp-long target sequence of fungal DNA by the polymerase chain reaction (PCR) using Thermus aquaticus DNA polymerase. The amplified DNA was characterized by agarose-gel electrophoresis, molecular hybridization using a synthetic oligonucleotide probe and direct sequencing. The application of the new method makes possible fast and direct detection of the pathogen in lignified plant tissues, a goal not previously achieved when a cloned probe and a dot-blot test were employed. In addition the PCR test can be used to advantage as a particularly simple and fast way of typing fungal isolates. This is achieved by submitting to DNA amplification crude homogenates of fungal mycelium and analysing the amplified DNA on an agarose mini-gel.Offprint requests to: F. Rollo  相似文献   

16.
Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is a destructive disease on wheat as well as an important internationally quarantined disease in many countries. The primer ISSR818 generated a polymorphic pattern displaying a 867-bp DNA fragment specific for T. controversa. The marker was converted into a sequence characterized amplified region (SCAR), and specific primers (TCKSF3/TCKSR3) designed for use in PCR detection assays; they amplified a unique DNA fragment in all isolates of T. controversa but not in the related pathogens. The detection limit with the primer set (TCKSF3/TCKSR3) was 5 ng of DNA which could be obtained from 5.5 μg of teliospores in a 25-μL PCR reaction mixture.  相似文献   

17.
A rapid and sensitive direct cell semi-nested PCR assay was developed for the detection of viable toxigenic V. cholerae in environmental water samples. The semi-nested PCR assay amplified cholera toxin (ctxA2B) gene present in the toxigenic V. cholerae. The detection sensitivity of direct cell semi-nested PCR was 2 × 103 CFU of V. cholerae whereas direct cell single-step PCR could detect 2 × 104 CFU of V. cholerae. The performance of the assay was evaluated using environmental water samples after spiking with known number of Vibrio cholerae O1. The spiked water samples were filtered through a 0.22 micrometer membrane and the bacteria retained on filters were enriched in alkaline peptone water and then used directly in the PCR assay. The semi-nested PCR procedure coupled with enrichment could detect less than 1 CFU/ml in ground water and sea water whereas 2 CFU/ml and 20 CFU/ml could be detected in pond water and tap water, respectively. The proposed method is simple, faster than the conventional detection assays and can be used for screening of drinking water or environmental water samples for the presence of toxigenic V. cholerae.  相似文献   

18.
Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is an important international quarantine disease in many countries. The objective of this investigation was to develop a diagnostic molecular marker generated from intersimple sequence repeat (ISSR) for rapid identification of T. controversa. A total of 60 primers were tested by ISSR to detect DNA polymorphisms between T. controversa and related species. The primer ISSR818 generated a polymorphic pattern displaying a 952‐ bp DNA fragment specific for T. controversa. The marker was converted into a sequence characterized amplified region (SCAR), and specific primers (TCKSF2/TCKSR2) were designed for use in a PCR detection assay. Its detection limit was 1 ng of DNA, which could be yielded by 1.1 μg of teliospores in a 25‐ μl PCR. Conclusively, a method to distinguish T. controversa from similar pathogenic fungi has been successfully developed based on the use of a SCAR marker.  相似文献   

19.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号