首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang YG  Lin X 《Biometrics》2005,61(2):413-421
The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth.  相似文献   

2.
3.
Wang YG  Zhao Y 《Biometrics》2008,64(1):39-45
Summary .   We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.  相似文献   

4.
Wang YG  Lin X  Zhu M 《Biometrics》2005,61(3):684-691
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.  相似文献   

5.
Longitudinal data analysis using generalized linear models   总被引:186,自引:0,他引:186  
  相似文献   

6.
For analyzing longitudinal binary data with nonignorable and nonmonotone missing responses, a full likelihood method is complicated algebraically, and often requires intensive computation, especially when there are many follow-up times. As an alternative, a pseudolikelihood approach has been proposed in the literature under minimal parametric assumptions. This formulation only requires specification of the marginal distributions of the responses and missing data mechanism, and uses an independence working assumption. However, this estimator can be inefficient for estimating both time-varying and time-stationary effects under moderate to strong within-subject associations among repeated responses. In this article, we propose an alternative estimator, based on a bivariate pseudolikelihood, and demonstrate in simulations that the proposed method can be much more efficient than the previous pseudolikelihood obtained under the assumption of independence. We illustrate the method using longitudinal data on CD4 counts from two clinical trials of HIV-infected patients.  相似文献   

7.
8.
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses.  相似文献   

9.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

10.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

11.
Rank-based regression for analysis of repeated measures   总被引:1,自引:0,他引:1  
Wang  You-Gan; Zhu  Min 《Biometrika》2006,93(2):459-464
  相似文献   

12.
Huggins R 《Biometrics》2000,56(2):537-545
In the study of longitudinal twin and family data, interest is often in the covariance structure of the data and the decomposition of this covariance structure into genetic and environmental components rather than in estimating the mean function. Various parametric models for covariance structures have been proposed but, e.g., in studies of children where growth spurts occur at various ages, it is difficult to a priori determine an appropriate parametric model for the covariance structure. In particular, there is a general lack of the visualization procedures, such as lowess, that are invaluable in the initial stages of constructing a parametric model for a mean function. Here we use kernel smoothing to modify a cross-sectional approach based on the sample covariance matrices to obtain smoothed estimates of the genetic and environmental variances and correlations for longitudinal twin data. The methods are proposed to be exploratory as an aid to parametric modeling rather than inferential, although approximate asymptotic standard errors are derived in the Appendix.  相似文献   

13.
Liang Y  Lu W  Ying Z 《Biometrics》2009,65(2):377-384
Summary .  In analysis of longitudinal data, it is often assumed that observation times are predetermined and are the same across study subjects. Such an assumption, however, is often violated in practice. As a result, the observation times may be highly irregular. It is well known that if the sampling scheme is correlated with the outcome values, the usual statistical analysis may yield bias. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times via latent variables. A two-step estimation procedure is developed for parameter estimation. We show that the resulting estimators are consistent and asymptotically normal, and that the asymptotic variance can be consistently estimated using the bootstrap method. Simulation studies and a real data analysis demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.  相似文献   

14.
Residuals are frequently used to evaluate the validity of the assumptions of statistical models and may also be employed as tools for model selection. For standard (normal) linear models, for example, residuals are used to verify homoscedasticity, linearity of effects, presence of outliers, normality and independence of the errors. Similar uses may be envisaged for three types of residuals that emerge from the fitting of linear mixed models. We review some of the residual analysis techniques that have been used in this context and propose a standardization of the conditional residual useful to identify outlying observations and clusters. We illustrate the procedures with a practical example.  相似文献   

15.
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.  相似文献   

16.
Means or other central tendency measures are by far the most common focus of statistical analyses. However, as Carroll (2003) noted, "systematic dependence of variability on known factors" may be "fundamental to the proper solution of scientific problems" in certain settings. We develop a latent cluster model that relates underlying "clusters" of variability to baseline or outcome measures of interest. Because estimation of variability is inextricably linked to estimation of trend, assumptions about underlying trends are minimized by using nonparametric regression estimates. The resulting residual errors are then clustered into unobserved clusters of variability that are in turn related to subject-level predictors of interest. An application is made to psychological affect data.  相似文献   

17.
18.
Informative drop-out arises in longitudinal studies when the subject's follow-up time depends on the unobserved values of the response variable. We specify a semiparametric linear regression model for the repeatedly measured response variable and an accelerated failure time model for the time to informative drop-out. The error terms from the two models are assumed to have a common, but completely arbitrary joint distribution. Using a rank-based estimator for the accelerated failure time model and an artificial censoring device, we construct an asymptotically unbiased estimating function for the linear regression model. The resultant estimator is shown to be consistent and asymptotically normal. A resampling scheme is developed to estimate the limiting covariance matrix. Extensive simulation studies demonstrate that the proposed methods are suitable for practical use. Illustrations with data taken from two AIDS clinical trials are provided.  相似文献   

19.
20.
A pseudolikelihood method for analyzing interval censored data   总被引:1,自引:0,他引:1  
We introduce a method based on a pseudolikelihood ratio forestimating the distribution function of the survival time ina mixed-case interval censoring model. In a mixed-case model,an individual is observed a random number of times, and at eachtime it is recorded whether an event has happened or not. Oneseeks to estimate the distribution of time to event. We usea Poisson process as the basis of a likelihood function to constructa pseudolikelihood ratio statistic for testing the value ofthe distribution function at a fixed point, and show that thisconverges under the null hypothesis to a known limit distribution,that can be expressed as a functional of different convex minorantsof a two-sided Brownian motion process with parabolic drift.Construction of confidence sets then proceeds by standard inversion.The computation of the confidence sets is simple, requiringthe use of the pool-adjacent-violators algorithm or a standardisotonic regression algorithm. We also illustrate the superiorityof the proposed method over competitors based on resamplingtechniques or on the limit distribution of the maximum pseudolikelihoodestimator, through simulation studies, and illustrate the differentmethods on a dataset involving time to HIV seroconversion ina group of haemophiliacs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号