首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A mutant of Escherichia coli dependent on erythromycin for growth spontaneously gives erythromycin-independent strains with altered or missing ribosomal proteins. strains with defects in ribosome assembly were sought and obtained from among these revertants. Two organisms in which ribosomal protein L19 is altered and absent respectively have 70S ribosomes whose dissociation into sub-units is particularly sensitive to pressures generated during centrifuging. The mutant that lacks protein L19 also accumulates ribosome precursor particles during exponential growth as do others including mutants that lack proteins S20 or L1. These strains also show unbalanced synthesis of RNA and so will be useful in investigating both the pathways and the regulation of ribosome assembly.  相似文献   

2.
Summary A temperature sensitive mutant of Escherichia coli was found to have two mutational alterations of its ribosomes: one of these was a streptomycin dependent mutation and the other was a suppressor alteration of S4, with a marked structural change. The altered form of S4 was studied in a strain that was constructed so that this alteration was the only one effecting the structure of the ribosome. Here, it was shown that the mutant form of S4 cause a temperature sensitive defect in the assembly of 30S subunits in vivo which is reflected in the inability of this mutant to properly process ribosomal RNA at the restrictive temperatures. An analysis of both transductants and revertants of this mutant show that the suppression of the streptomycin dependence phenotype, temperature sensitivity, and a defect in RNA processing all have their origin in a single mutational event effecting the structural gene for S4.  相似文献   

3.
Summary Mutants resistant to (Str-R) or dependent on streptomycin (Str-D) were isolated from several streptomycin independent (Str-I) strains of Escherichia coli. From 90 of these mutants ribosomes were isolated and the ribosomal proteins analyzed by two-dimensional polyacrylamide gel electrophoresis. The results which are summarized in Tables 1-4 led to the following conclusions:a) The phenotype (Str-R or Str-D) of the mutants isolated from the Str-I strains strongly depends on the parental strain. b) No other ribosomal proteins than S4, S5 and S12 seem to be altered by mutations leading to dependence on, independence from or resistance to streptomycin. c) The S4 proteins of the analyzed mutants belong to three groups. The ratio between the groups depends more on the origin of the mutants than on their phenotype. d) Eight new types of altered S4 proteins were detected. It is very likely that many, if not all, of the altered S4 proteins originated by frame shift mutations. e) Some of the mutants differ from the wild type by alterations in three ribosomal proteins (S4, S5 and S12). The alteration in one protein, S4, apparently compensates for that in another protein, S5, in such a way that the original phenotype is expressed. These mutants are therefore an excellent tool for studies at the molecular level on the interaction of ribosomal components within the particle.  相似文献   

4.
A functional pseudoknot in 16S ribosomal RNA.   总被引:37,自引:4,他引:33       下载免费PDF全文
T Powers  H F Noller 《The EMBO journal》1991,10(8):2203-2214
Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watson-Crick interactions between these nucleotides are essential for ribosomal function. Moreover, we find that certain mild perturbations of the structure, for example, creation of G-U wobble pairs, generate resistance to streptomycin, an antibiotic known to interfere with the decoding process. Chemical probing of mutant ribosomes from streptomycin-resistant cells shows that the mutant ribosomes have a reduced affinity for streptomycin, even though streptomycin is thought to interact with a site on the 30S subunit that is distinct from the 530 region. Data from earlier in vitro assembly studies suggest that the pseudoknot structure is stabilized by ribosomal protein S12, mutations in which have long been known to confer streptomycin resistance and dependence.  相似文献   

5.
Summary Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin.Biochemical analysis shows that the mutants each have two modified 30S ribosomal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).  相似文献   

6.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

7.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

8.
The fluorescent reagent N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (I-AEDANS) was employed to detect and study the previously reported conformational change in the Escherichia coli ribosome induced by streptomycin. Labeling of ribosomes with this probe, which results in the derivatization of proteins S18 and L31', described earlier, inhibits neither their ribosomal protein synthesizing nor misreading ability. To calculate the amount of streptomycin bound to the ribosome, we determined the K'D for streptomycin, which is 0.24 micron, indicating that under our conditions, bound streptomycin/ribosome molar ratios are low, not in excess of 1. Under these conditions, streptomycin addition induces fluorescence quenching by 15% but does not affect streptomycin-resistant ribosomes. Maximal misreading occurs at these same ratios. Removal of AEDANS-L31' from the ribosomes drastically reduces streptomycin-induced quenching indicating the involvement of the environment of this protein in streptomycin action. The finding that streptomycin decreases AEDANS-L31' affinity for the ribosome supports this view. Streptomycin has been shown to bind to the 30 S subunit protein S4 while the 50 S protein L31' has been shown to be localized at the subunit interface. Thus, the observation that streptomycin influences this 50 S subunit protein L31', combined with the tight correlation between the effects of streptomycin on quenching and on misreading, strongly suggests that this antibiotic induces a conformational change at the subunit interface of the ribosome, and that this results in misreading. Polyuridylic acid also induces a conformational change in the ribosome but the polynucleotide and streptomycin seem to act independently. Streptomycin-resistant ribosomes, which undergo neither streptomycin-induced fluorescence nor streptomycin-induced misreading, are resistant to misreading induced by high Mg2+ as well.  相似文献   

9.
Ribosomal proteins of parental thiostrepton- and micrococcin-sensitive Bacillus subtilis cysA14 and thiostrepton-and micrococcin-resistant mutants were compared. Several electrophoretic and immunochemical techniques showed unambiguously that BS-L11 was not present on 50 S ribosomal subunits from the six thiostrepton-resistant mutants. Protein BS-L11 reappeared in all six revertants from thiostrepton resistance to thiostrepton sensitivity. No definitive protein alteration could be ascribed to the mutation from micrococcin sensitivity to resistance. It was also demonstrated that B. subtilis protein BS-L11 is homologous to Escherichia coli ribosomal protein L11. The finding that ribosomes from thiostrepton-resistant mutants do not contain protein L11 suggests that L11 not only is involved in binding of thiostrepton, but also, when mutationally altered, confers resistance to this antibiotic. Although the ribosomes of these strains do not contain protein L11, all thiostrepton-resistant mutants showed the same viability as the parental strain. Thus protein L11 cannot be obligatory for the structure and function of the ribosome.  相似文献   

10.
We have used the application of hydrostatic pressure to modify the misreading of polyuridylate template. Pressure was used to test ribosomes isolated from Escherichia coli strains containing mutations in the S12 ribosomal protein which lead to streptomycin-resistance and -dependence. The incorporation of phenylalanine into polypeptide, at a given pressure, was found to vary with the source of ribosomes and was found to correlate with S12-dependent changes in rates of incorporation suggesting a role of the S12 ribosomal protein in the pressure effect. Streptomycin partially alleviated the increased pressure-resistance in those cases where control rates of incorporation were found to be stimulated by the addition of streptomycin. In contrast, the misincorporation of isoleucine was substantially more sensitive to pressure application, regardless of ribosome source or the presence of streptomycin. These results suggest that the application of hydrostatic pressure affects at least two distinct ribosomal reactions important to the discrimination of these two amino acids.  相似文献   

11.
A cell-free protein synthesizing system was used to study the mechanism of resistance to streptomycin (Str) and spectinomycin (Spc) in laboratory mutants and clinical isolates of Neisseria gonorrhoeae. The 70S ribosomes from sensitive strains were sensitive to the effects of Str and Spc on synthesis directed by several synthetic polynucleotide messengers, whereas 70S ribosomes from resistant strains were resistant to these same effects. In each case, the alteration was localized to the 30S ribosomal subunit by studying antibiotic sensitivities of hybrid 70S ribosomes formed by combining subunits from sensitive and resistant strains. No evidence was found for streptomycin- or spectinomycin-inactivating enzymes.  相似文献   

12.
Mechanisms of high streptomycin resistance (8000 micrograms/ml) in S. derby cells carrying R plasmids were studied. The cells were isolated from clinical materials. The findings showed that the streptomycin resistance determinant in the S. derby cells was localized on the plasmid. In cell-free extracts of the strains, there was detected no inactivation of aminoglycosides by phosphorylation, adenylation and acetylation of the antibiotic molecules. The plasmid elimination from the cells of S. derby K89 by ethidium bromide resulted in loosing of streptomycin resistance by the cells. This indirectly excluded the mechanism associated with modification of the ribosomes. Streptomycin resistance in the strains studied must be due to decreased permeability of the S. derby K89 cell envelopes for streptomycin.  相似文献   

13.
Although high-resolution structures of the ribosome have been solved in a series of functional states, relatively little is known about how the ribosome assembles, particularly in vivo. Here, a general method is presented for studying the dynamics of ribosome assembly and ribosomal assembly intermediates. Since significant quantities of assembly intermediates are not present under normal growth conditions, the antibiotic neomycin is used to perturb wild-type Escherichia coli. Treatment of E. coli with the antibiotic neomycin results in the accumulation of a continuum of assembly intermediates for both the 30S and 50S subunits. The protein composition and the protein stoichiometry of these intermediates were determined by quantitative mass spectrometry using purified unlabeled and 15N-labeled wild-type ribosomes as external standards. The intermediates throughout the continuum are heterogeneous and are largely depleted of late-binding proteins. Pulse-labeling with 15N-labeled medium time-stamps the ribosomal proteins based on their time of synthesis. The assembly intermediates contain both newly synthesized proteins and proteins that originated in previously synthesized intact subunits. This observation requires either a significant amount of ribosome degradation or the exchange or reuse of ribosomal proteins. These specific methods can be applied to any system where ribosomal assembly intermediates accumulate, including strains with deletions or mutations of assembly factors. This general approach can be applied to study the dynamics of assembly and turnover of other macromolecular complexes that can be isolated from cells.  相似文献   

14.
Site-directed mutagenesis has been used to change, specifically, residue 1067 within 23 S ribosomal RNA of Escherichia coli. This nucleoside (adenosine in the wild-type sequence) lies within the GTPase centre of the larger ribosomal subunit and is normally the target for the methylase enzyme responsible for resistance to the antibiotic thiostrepton. The performance of the altered ribosomes was not impaired in cell-free protein synthesis nor in GTP hydrolysis assays (although the 3 mutant strains grew somewhat more slowly than wild-type) but their responses to thiostrepton did vary. Thus, ribosomes containing the A to C or A to U substitution at residue 1067 of 23 S rRNA were highly resistant to the drug, whereas the A to G substitution resulted in much lesser impairment of thiostrepton binding and the ribosomes remained substantially sensitive to the antibiotic. These data reinforce the hypothesis that thiostrepton binds to 23 S rRNA at a site that includes residue A1067. They also exclude any possibility that the insensitivity of eukaryotic ribosomes to the drug might be due solely to the substitution of G at the equivalent position within eukaryotic rRNA.  相似文献   

15.
16.
We have investigated the mechanism of the expression of resistance to high levels of viomycin and coresistance to streptomycin in a mutant strain of Mycobacterium smegmatis ATCC 14468 (AC-13) which was obtained by serial transfers of parental cells to media containing increasing concentrations of viomycin. It was shown previously that resistance to viomycin by strain AC-13 was due to an alteration in the 50 S ribosomal subunit (20). However, genetic analysis has shown that mutation in 50 S subunits alone gave only low level resistance to viomycin. When a streptomycin resistant mutation (caused by an alteration in the 30 S subunit) was introduced into the low level viomycin resistant recombinant strains, most of them were highly resistant to viomycin. Some recombinants were resistant to intermediate levels of viomycin, and the remainder were not affected by the introduction of the strr allele. Studies with in vitro cell-free systems have shown that streptomycin resistant 30 S ribosomal subunits obtained from a high level viomycin resistant recombinant were able to modify the levels of resistance to viomycin expressed by the 50 S ribosomal subunit. These findings provide additional evidence concerning the functional relationship between 30 S and 50 S ribosomal components in ribosomes.  相似文献   

17.
Viomycin-resistant strains were isolated from Mycobacterium smegmatis. Ribosomes were isolated and tested for drug resistance in subcellular systems containing poly(U) as messenger ribonucleic acid. Resistance to viomycin in these strains was due to altered ribosomes. Further analysis showed that viomycin resistance of two mutants with low level resistance (20 mug/ml) was due to altered 30S ribosomal subunits. Another mutant that was highly resistant to viomycin (1 mg/ml), however, had altered 50S ribosomal subunits.  相似文献   

18.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

19.
20.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号