首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor for nerve growth factor (NGF) has been purified to near homogeneity from octylglucoside extracts of A875 melanoma cell membranes by the use of repetitive affinity chromatography on NGF-Sepharose. Elution of purified receptor (NGF receptor) was accomplished with 0.15 M NaCl, pH 11.0, containing phosphatidylcholine and octylglucoside. Chromatography on two columns of NGF-Sepharose yielded a 1500-fold purification of the receptor, as assessed by 125I-NGF binding, and permitted recovery of 9% of the total binding activity in the soluble extract. Scatchard analysis of equilibrium binding of 125I-NGF provided similar Kd values for NGF receptors in soluble extracts of A875 membranes (2.2 nM) and with purified NGF receptor (3.1 nM). Examination of NGF receptor after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two major peptides, of Mr = 85,000 and Mr = 200,000. Affinity labeling experiments, done with 125I-NGF and A875 cells, soluble extracts of A875 cell membranes, and purified receptor, show that both of these components of the NGF receptor can be specifically cross-linked to 125I-NGF.  相似文献   

2.
Molecular characteristics of nerve growth factor receptors on PC12 cells   总被引:23,自引:0,他引:23  
Cross-linking of 125I-nerve growth factor (NGF) to PC12 cells with the photoreactive heterobifunctional agent N-hydroxysuccinimidyl-4-azidobenzoate results in the labeling of two major bands with Mr 158,000 and 100,000 and a minor band with Mr 225,000 as determined by polyacrylamide gel electrophoresis under denaturing and reducing conditions. Binding of 125I-NGF to and cross-linking into all these species is abolished in the presence of excess unlabeled NGF but not in the presence of unlabeled epidermal growth factor, insulin, or bovine pancreatic trypsin inhibitor. When PC12 cells with bound 125I-NGF are incubated in excess unlabeled NGF at 0 degree C prior to cross-linking, only the Mr 158,000 species remains. In addition, binding of 125I-NGF to the Mr 158,000 complex is trypsin-resistant, whereas binding to the Mr 100,000 complex is not. These experiments identify the Mr 158,000 species as the slow NGF-receptor complex (chase stable at 0 degree C) and the smaller Mr 100,000 species as the fast NGF-receptor complex (trypsin sensitive). Furthermore, 125I-NGF bound to the former but not to the latter species is displaced by very-low concentrations of NGF, showing that at least a significant fraction of the high-molecular-weight slow receptor is also a high-affinity receptor. This identification is supported by the finding that chick sensory neurons which possess both high- and low-affinity receptors exhibit two major labeled bands with Mr 145,000 and 105,000 as a result of cross-linking with 125I-NGF, whereas a cell population enriched in non-neuronal cells, which possess only low-affinity receptors, exhibits only the Mr 105,000 component. A shift in molecular weight of both species after pretreatment with neuraminidase indicates that both complexes contain sialoglycoproteins and rules out the possibility that differences in sialic acid content are responsible for the difference in molecular weight of the two complexes. The relative amount of the labeling of these two complexes is not affected by the presence of protease inhibitors nor by a variation of 5000-fold in cross-linker concentration. These results place some limits on possible models for the NGF receptors and their interconversion.  相似文献   

3.
PC12 cells possess two classes of nerve growth factor (NGF) receptors on their surfaces which can be distinguished by kinetic criteria. The majority class binds and releases 125I-NGF at a relatively rapid rate and has been called fast. The second class of receptors has been called slow because of relatively slower rates of binding and release of 125I-NGF, and also may be distinguished from fast receptors by their cytoskeletal association and resistance to trypsin. PC12 cell plasma membranes were prepared and shown to have only the fast class of receptors. These membranes were fused to receptorless 3T3 cells with polyethylene glycol. The resultant fused cells were shown to possess NGF receptors, essentially all of which behave like slow receptors. Immunofluorescence microscopy was used to monitor the introduction of PC12 cell membrane and NGF receptors into 3T3 cells. Results obtained with C10-2, a monoclonal antibody specific for a major PC12 cell-surface antigen. show that up to 90% of 3T3 cells receive PC12 membrane and that the PC12 membrane becomes integrally incorporated into the 3T3 cell plasma membrane. It is suggested that an association of receptors with cytoskeleton may be involved in the conversion of fast to slow receptor behavior, and that the differing proportion of fast and slow NGF receptors in PC12 and 3T3 cells reflects the differing cytoskeletal organization of these cells.  相似文献   

4.
Relationship among types of nerve growth factor receptors on PC12 cells   总被引:3,自引:0,他引:3  
We analyzed the kinetics and thermodynamics of 125I-nerve growth factor (125I-NGF) binding to NGF-receptor on PC12 cells. We used conditions of pseudo-first order kinetics and techniques to quantitate internalized complexes, "slow" or high affinity binding complexes, and cell surface "fast" or low affinity complexes. Two possible models were examined: binding to two independent receptors at the cell surface (i.e. high and low affinity forms of NGF-receptor) and a model for consecutive formation of fast, low affinity binding followed by slow, high affinity binding or internalization. Our data are consistent with the consecutive model only. The rates of association and dissociation of NGF with slow, high affinity sites and internalized, acid wash-resistant sites are indistinguishable from each other. We also analyzed, in detail, the two assays primarily used to distinguish slow binding complexes from internalized complexes. Scatchard analysis of total binding and dissociation of pre-equilibrated 125I-NGF in the presence of unlabeled NGF at high concentration (cold wash). Neither of these assays shows any evidence that the slow, high affinity binding step is different from internalization of the 125I-NGF-receptor complex. Based on this analysis, there are only two detectable forms of NGF-receptor on PC12 cells: complexes on the surface of the cells with a binding affinity of 0.5 nM at 37 degrees C and complexes internalized by the cells. Furthermore, the data are consistent with a model in which NGF-receptor is internalized constitutively and independently of occupancy by NGF. We also examined the fate of internalized 125I-NGF. In the first 60 min after contact with PC12 cells, no degradation of 125I-NGF was observed. Moreover, a significant amount of 125I-NGF recirculates to the cell surface and is released as intact, Mr = 13,000 NGF. The cells were also stimulated by NGF in a primary neurite outgrowth assay with an ED50 of 2-16 pM under conditions of low initial cell numbers in a large extracellular volume of NGF-containing medium. Thus, low level occupancy of the cell surface receptors, Kd = 0.5 nM, for several days is sufficient to stimulate neurite outgrowth. This indicates the presence of spare NGF-receptors on the surface PC12 cells.  相似文献   

5.
Cultured neural crest cells undergoing differentiation have been shown to contain a subpopulation of cells with specific receptors for nerve growth factor (NGF). These cells are the potential targets of NGF during differentiation and development. This study was done to pharmacologically characterize the binding of NGF to long-term (1- to 3-week) cultures of quail neural crest cells. The data indicate that 125I-NGF binding was specific and saturable, with less than 20% nonspecific binding. Scatchard analysis revealed the presence of one type (class) of receptors with a binding constant (Kd) similar to that of the low-affinity binding site described for embryonic dorsal root and sympathetic ganglia (approximately 3.2 nM). This was corroborated by displacement experiments (Kd of 1.3 nM), in which 125I-NGF binding was measured in the presence of increasing concentrations of nonradioactive NGF. In addition, affinity labeling revealed that the 125I-NGF-receptor complex had a molecular weight of about 93K, characteristic of the low-affinity NGF receptor of PC12 cells. The NGF receptor of cultured neural crest cells was trypsin-sensitive, as is typical of the low-affinity NGF binding sites. These findings indicate that differentiating neural crest cells lack high-affinity 125I-NGF binding sites. In contrast, embryonic dorsal root and sympathetic ganglia cells, known NGF targets, have both high- and low-affinity receptors. Measurements of the differential release of surface-bound 125I-NGF indicated that a relatively small amount (about 14%) of NGF is internalized over a 1-hr period. Cultured neural crest cells which bear NGF receptors were also shown by light microscopic radioautographic techniques to incorporate [3H]thymidine. I suggest, therefore, that cultured neural crest cells which have not terminally differentiated, as judged by morphological criteria and continued proliferation, may express an early developmental form of the NGF receptor.  相似文献   

6.
The binding and internalization of 125I-nerve growth factor (NGF) by PC12 pheochromocytoma cells was studied as a function of extracellular potassium concentration. Both surface-bound and internalized fractions of 125I-NGF associated with the cells under depolarizing conditions (50 mM K+) increased to 144 +/- 28% (average +/- SEM, six different cell preparations) and to 176 +/- 12% (n = 6), respectively, of those observed at 6.0 mM K+. Scatchard-type analysis of the data indicates increased sites for the binding and internalization of iodinated NGF by the cells. Similar enhancement was observed for cells treated with NGF as well. This voltage-dependent phenomenon was reversible, and also observed in the presence of veratridine. Moreover, withdrawal of extracellular Ca2+ abolished high K+-induced modulation of 125I-NGF binding and internalization, indicating that this effect may be mediated by Ca2+.  相似文献   

7.
PC12 is a nerve growth factor (NGF) responsive cell line which exhibits two classes of NGF receptors distinguishable by different kinetic rate constants, sensitivity to trypsin and resistance to Triton detergent solubilization. Whereas incubation of PC12 cells with wheat germ agglutinin (WGA) prior to addition of 125I-NGF inhibits binding of NGF to both classes of receptors, treatment with WGA subsequent to incubation with NGF does not inhibit NGF binding but causes the class of NGF receptors which exhibit rapid or "Fast" dissociation kinetics prior to lectin treatment to be converted to the form which exhibits "Slow" dissociation kinetics. This WGA-mediated receptor conversion is lectin specific, blocked by N-acetyl-D-glucosamine, occurs at similar rates at 4 and 37 degrees C, and is not impaired by a metabolic poison. NGF receptors converted by WGA, like pre-existing Slow receptors, are resistant to trypsinization and remain associated to Triton X-100 extracted "cytoskeletons." Very similar results were obtained for NGF receptors on a human melanoma cell line A875. These results suggest that Fast and Slow receptors are two interconvertible forms of a single protein, rather than distinct proteins. The significance of the generality of these properties for NGF receptors from diverse species and cell types is discussed.  相似文献   

8.
Association of 125I-nerve growth factor (NGF) with PC12 pheochromocytoma cells was studied. Surface-bound and internalized NGF were distinguished by differential release of the former at low pH, high salt. Binding to the surface was rapid; at 0.2 nM (5 ng/ml) 125I-NGF, this was near-maximal within 5 min. Internalization, in contrast, did not start until about 2 min after NGF exposure and, thereafter, proceeded linearly for at least 1/2-1 h. By the latter time, approximately 75% of total bound NGF was within rather than on the surface of the cells. Binding versus concentration experiments indicated two distinct classes of surface binding sites. For both naive cells and cells treated with NGF for at least a week (primed cells), about 7% of the receptors had an apparent binding constant of about 0.3 nM; the remaining sites half-saturated at approximately 4 nM NGF. The number of each type of site was 3--4-fold higher/mg of protein in primed cells. For both naive and primed cultures, internalization appeared to be mediated by a single class of uptake sites which half-saturated at about 0.3 nM. The maximal rate of uptake by primed cells (200 fmol/h/mg protein) was about twice that for naive cells. Light and electron microscopic autoradiography indicated that the density of binding was substantially higher in primed cultures and that this increase took place over a time course of days to weeks. These findings suggest that NGF brings about long-term increases in its own high- and low-affinity surface receptors, but is internalized only via the high-affinity sites.  相似文献   

9.
Both high and low affinity receptors for nerve growth factor (NGF) have been described, but only the former appear to mediate NGF actions and uptake. To specifically characterize the molecular identity of the high affinity site and to compare it with the low affinity site, the water-soluble carbodiimide EDC was used to cross-link 125I-NGF to NGF receptors on: rat PC12 cells, PC12nnr5 cells (PC12 mutants that have only low affinity NGF binding), SH-SY5Y human neuroblastoma cells (which have only high affinity binding sites), and cultured rat sympathetic ganglion cells. A variety of criteria were used to distinguish the two classes of affinity-labeled receptors: competition with unlabeled NGF, dissociation rate, and selective solubilization by 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that cross-linking generated only a single Mr approximately 103,000 125I-NGF affinity-labeled species which represents both the low and high affinity forms of the receptor. The 125I-NGF X receptor complexes formed with both affinity classes of the receptor were quantitatively immunoprecipitated by the monoclonal anti-NGF-receptor antibody 192-IgG and both showed identical shifts in mobility when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These findings indicate that both high and low affinity NGF receptors possess apparently identical NGF-binding moieties. The differences between the kinetic and functional properties of the two receptor types may therefore result from their interactions with other membrane components or with cytoplasmic proteins.  相似文献   

10.
In sections of rat forebrain, perikarya labeled radioautographically with125I-NGF resembled cholinesterase-positive neurons in their distribution within striatum and basal forebrain. Neurons with NGF receptors were also visualized in radioautographs prepared from the basal forebrain of a cerebrus monkey. Present techniques fail to detect axons projecting from basal forebrain to hippocampus or cortex which have been shown to take up NGF selectively in retrograde transport studies. In studies with membrane-enriched preparations from rat, high-affinity binding of125I-NGF (half maximal saturation in the 15–30 pM range) was detected in basal forebrain and striatum; lower levels of high-affinity binding were seen in hippocampus and neocortex. The binding and molecular properties of these receptors are similar to those described in other NGF-responsive tissues. These observations are further evidence supporting a biological role for NGF on some forebrain cholinergic neurons in adult rat.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

11.
PC12, an NGF responsive cell line, exhibits two classes of NGF receptors which we designate “Fast” and “Slow.” Fast receptors, accounting for 75% of specific NGF binding, are distinguished by their rapid rates for association and dissociation of 125I-NGF. At 37°C, binding of 125I-NGF to Fast receptors is 5-fold more rapid than to Slow receptors and dissociation of 125I-NGF from Fast receptors is 40-fold more rapid than from Slow receptors. No evidence was obtained for a ligand-induced conversion of receptors from Fast to Slow characteristics. Scatchard analysis of binding experiments indicates that PC12 cells possess 60,000 specific receptors for NGF of which 15,000 are of the Slow class. Despite having very different kinetic constants, Slow and Fast receptors have similar equilibrium binding constants (about 2 × 10?10 M) due to cancelling effects of differing association and dissociation rates. Brief digestion of PC12 cells with trypsin before addition of NGF inactivates essentially all Fast receptors without significantly affecting Slow receptors. Therefore Fast and Slow classes of receptors must exist prior to addition of NGF, and the observed receptor heterogeneity is not due to ligand-induced changes. 125I-NGF bound to Slow receptors is preferentially associated with preparations of Triton X-100 insoluble cytoskeletons, while 125I-NGF bound to Fast receptors is solubilized by this procedure. Cytoskeletally associated NGF is almost exclusively associated with the extranuclear cytoskeletal matrix rather than with the nucleus itself. Preparation of nuclei by various methods suggests that the presence of contaminating cytoskeletal elements should be considered in evaluating the existence of translocation and binding of NGF to the nucleus. Inhibition of endocytotic internalization of NGF either by lowering of temperature to O°C or by preincubation of cells with sodium azide in medium lacking glucose does not reduce the slowly released component of bound NGF, nor alter its cytoskeletal association. The possible functional roles of Slow and cytoskeletal receptors are discussed.  相似文献   

12.
Microsomal membranes from A875 human melanoma cells contain nerve growth factor receptors (NGF-receptors) which appear to belong to a single class with homogeneous binding properties, as determined by Scatchard plots. NGF-receptors in these membrane preparations are also uniformly highly sensitive to tryptic proteolysis, and 125I-NGF bound to NGF-receptor in these membranes is rapidly dissociated in the presence of a high concentration of unlabeled NGF. However, analysis of 125I-NGF dissociation kinetics indicated that two classes of NGF-receptor were present in these membranes. Thus, NGF-receptors can express either high or low affinity trypsin-sensitive states in addition to the high affinity trypsin resistant NGF-receptor state described previously (Buxser, S. E., Kelleher, D. J., Watson, L., Puma, P., and Johnson, G. L. (1983) J. Biol. Chem. 258, 3741-3749). The high affinity trypsin-sensitive and low affinity trypsin-sensitive states correlate with 200- and 90-kDa 125I-NGF X NGF-receptor complexes observed in photoaffinity cross-linking experiments. The absence of differences in peptide maps generated from the two sizes of NGF-receptor proteins together with structural and binding data strongly indicates that the 200-kDa NGF-receptor protein is a complex, probably a dimer, consisting of two 80-kDa NGF-receptor proteins associated with a single beta-NGF dimeric molecule. A model is proposed which relates structural states of NGF-receptors with specific receptor binding properties. The model provides an alternative explanation for binding phenomena previously attributed to negative cooperativity.  相似文献   

13.
The specific binding of various concentrations of 125I-labeled nerve growth factor (NGF) to PC12 cells at 37 degrees C reached maxima after 90 min and then declined to 25% of maximal binding after 10 h. Decreased binding was accompanied by degradation of 125I-NGF and the appearance of acid-soluble biologically inactive 125I (mainly 125I-monoiodotyrosine) in the medium as well as a decrease in the number of surface NGF receptors. The time-dependent decrease in binding and the degradation of 125I-NGF were inhibited by low temperature and the lysosomotropic agent chloroquine while degradation was inhibited by metabolic energy inhibitors in the absence of glucose. Chloroquine also produced an increase in the accumulation of 125I-NGF which was not readily removed from the cells. These data suggest that 125I-NGF bound to PC12 cells is efficiently internalized by receptor-mediated endocytosis and degraded by the lysosomes. It appears from other data that this process does not produce the intracellular signals regulating neurite outgrowth.  相似文献   

14.
Summary Retinoic acid (RA), a naturally occurring metabolite of vitamin A, increased the number of receptors for nerve growth factor (NGF) in cultured human neuroblastoma cells (LA-N-1), as indicated by an immunofluorescence assay of cell surface receptors and by specific binding of 125I-NGF to solubilized receptors. Analysis of 125I-NGF binding showed that RA increased the number of both high affinity and low affinity receptors for NGF without affecting the equilibrium dissociation constants. Neurite outgrowth similar to that produced by NGF occurred following RA-treatment in LA-N-1 cells, in the SY5Y subclone of SK-N-SH human neuroblastoma cells and in explanted chick dorsal root ganglia (DRG). Whether morphological changes following RA treatment are directly related to the increase in NGF receptors is unknown. Data presented here are consistent with literature reports that RA modifies cell surface glycoproteins, including those that act as cell surface receptors for epidermal growth factor and insulin.Abbreviations DRG dorsal root ganglia - NGF nerve growth factor - RA retinoic acid  相似文献   

15.
Nerve Growth Factor Receptors in Human Neuroblastoma Cells   总被引:2,自引:2,他引:2  
Receptors for the nerve growth factor protein (NGFR) present in the human neuroblastoma cell line LAN-1 were characterized. LAN-1 cells display high-affinity (type I, with KD value of 5.9 X 10(-11) M) and low-affinity (type II, with KD value of 9.2 X 10(-9) M) binding to NGF. NGFR were fractionated by preparative isoelectric focusing in a granulated gel (PEGG). High-affinity binding was found in the 5.9-6.2 pH region of the PEGG, and low-affinity binding in the 4.6-4.8 and 8.8-9.3 pH ranges. After further analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) we observed both 92.5- and 200-kDa molecular species associated with NGF binding activity. The 200-kDa protein was found in fractions displaying high-affinity NGF binding and the 92.5-kDa protein in fractions displaying low-affinity NGF binding. Equilibrium binding analysis of NGF in PEGG fractions confirmed the presence of two specific saturable binding sites with KD values similar to those observed for whole dissociated cells. When NGFR II activity from the acidic region of the PEGG chromatogram was incubated with NGFR II from the basic region of the PEGG chromatogram, there was no change in NGF binding or in the number of apparent NGF receptors. However, incubation of these same fractions with a fraction having only NGFR I showed an apparent increase in high-affinity NGF binding and a decrease in low-affinity NGF binding. Immunoprecipitation of this "mixed" fraction and analysis on SDS-PAGE under reduced and nonreduced conditions showed 200-kDa and 92.5-kDa proteins under nonreduced conditions and a 92.5-kDa protein under reduced conditions. Our findings are consistent with the hypothesis that there are two distinct NGF receptors in NGF-responsive cells. The interconvertibility of low- and high-affinity receptors and the possible existence of a modulator type protein or of "silent" type receptors are also in agreement with our findings.  相似文献   

16.
Zinc inhibits p75NTR-mediated apoptosis in chick neural retina.   总被引:3,自引:0,他引:3  
It has previously been documented that Zn2+ inhibits TrkA-mediated effects of NGF. To evaluate the ability of Zn2+ to attenuate the biological activities of NGF mediated by p75NTR, we characterized the effects of this transition metal cation on both binding and the pro-apoptotic properties of the NGF-p75NTR interaction. Binding of NGF to p75NTR displayed higher affinity in embryonic chick retinal cells than in PC12 cells. NGF induced apoptosis in dissociated cultures of chick neural retina. The addition of 100 microM Zn2+ inhibited binding and chemical cross-linking of 125I-NGF to p75NTR, and also attenuated apoptosis mediated by this ligand-receptor interaction. These studies lead to the conclusion that Zn2+ antagonizes NGF/p75NTR-mediated signaling, suggesting that the effect of this transition metal cation can be either pro- or anti-apoptotic depending on the cellular context.  相似文献   

17.
Four mutant PC12 pheochromocytoma cell lines that are nerve growth factor (NGF)-nonresponsive (PC12nnr) have been selected from chemically mutagenized cultures by a double selection procedure: failure both to grow neurites in the presence of NGF and to survive in NGF-supplemented serum-free medium. The PC12nnr cells were deficient in all additional NGF responses surveyed: abatement of cell proliferation, changes in glycoprotein composition, induction of ornithine decarboxylase, rapid changes in protein phosphorylation, and cell surface ruffling. However, PC12nnr cells closely resembled non-NGF-treated PC12 cells in most properties tested: cell size and shape; division rate; protein, phosphoprotein, and glycoprotein composition; and cell surface morphology. All four PC12nnr lines differed from PC12 cells in three ways in addition to failure of NGF response: PC12nnr cells failed to internalize bound NGF by the normal, saturable, high-affinity mechanism present in PC12 cells. The PC12nnr cells bound NGF but entirely, or nearly entirely, at low-affinity sites only, whereas PC12 cells possess both high- and low-affinity NGF binding sites. The responses to dibutyryl cyclic AMP that were tested appeared to be enhanced or altered in the PC12nnr cells compared to PC12 cells. Internalization of, and responses to, epidermal growth factor were normal in the PC12nnr cells ruling out a generalized defect in hormonal binding, uptake, or response mechanisms. These findings are consistent with a causal association between the presence of high-affinity NGF receptors and of NGF responsiveness and internalization. A possible relationship is also suggested between regulation of cAMP responses and regulation of NGF responses or NGF receptor affinity.  相似文献   

18.
Appearance of nerve growth factor receptors on cultured neural crest cells   总被引:2,自引:0,他引:2  
Light microscopic radioautography of differentiating quail neural crest cultures (1 to 2 weeks after explanation) incubated with Iodine-125-labeled nerve growth factor (125I-NGF) revealed that approximately 35% of the cells bound NGF. The binding was specific and saturable; it was blocked by an excess of nonradioactive NGF, and was not detected following incubation with biologically inactive 125I-NGF. In addition, the binding did not appear to be blocked or diminished by insulin. Cell cultures prepared from somites or notochord showed no specific binding of 125I-NGF. Melanocytes comprised approximately 10% of the cell population in these cultures and appeared to be unlabeled. The subpopulation of cells with NGF receptors that were morphologically similar to other non-melanocyte unlabeled cells present in the neural crest cultures are probably the targets of the factor during differentiation and development. In contrast, there was no evidence of 125I-NGF binding by premigratory neural crest (adherent to the isolated neural tube) or by early migratory neural crest cells (24 hr after explantation). Both of these types of neural crest cells are relatively undifferentiated. The cells of the neural tube were also unlabeled. The binding of 125I-NGF to differentiating neural crest cells was not noticeably diminished by a brief pretreatment with trypsin or Dispase, enzymes used in the isolation of neural tubes. Hence, the absence of NGF receptors on premigratory neural crest and early migratory neural crest cultures was not due to enzymatic alterations of the receptor. It seems, therefore, that receptors for NGF appear on neural crest cells during the time when these cells are acquiring their phenotypic characteristics.  相似文献   

19.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

20.
A method was developed to label epidermal growth factor (EGF) receptors with 125I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an Mr approximately 180,000 EGF-receptor complex and larger Mr greater than or equal to 360,000 aggregates. The formation of the larger complexes was time and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of 125I-EGF-labeled high- (Kd approximately 0.16 nM) and low- (Kd approximately 1.5 nM) affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the Mr approximately 180,000 125I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant Mr approximately 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the Mr approximately 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S3 cell membranes at 4 degrees C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号