首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

2.
A complex of γ, ε, and c subunits rotates in ATP synthase (FoF1) coupling with proton transport. Replacement of βSer174 by Phe in β-sheet4 of the β subunit (βS174F) caused slow γ subunit revolution of the F1 sector, consistent with the decreased ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704]. Modeling of the domain including β-sheet4 and α-helixB predicted that the mutant βPhe174 residue undergoes strong and weak hydrophobic interactions with βIle163 and βIle166, respectively. Supporting this prediction, the replacement of βIle163 in α-helixB by Ala partially suppressed the βS174F mutation: in the double mutant, the revolution speed and ATPase activity recovered to about half of the levels in the wild-type. Replacement of βIle166 by Ala lowered the revolution speed and ATPase activity to the same levels as in βS174F. Consistent with the weak hydrophobic interaction, βIle166 to Ala mutation did not suppress βS174F. Importance of the hinge domain [phosphate-binding loop (P-loop)/α-helixB/loop/β-sheet4, βPhe148-βGly186] as to driving rotational catalysis is discussed.  相似文献   

3.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

4.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

5.
Subunit gamma of the ATP synthase F(1) sector is located at the center of the alpha(3)beta(3) hexamer and rotates unidirectionally during ATP hydrolysis, generating the rotational torque of approximately 45 pN.nm. A mutant F(1) with the betaSer-174 to Phe substitution (betaS174F) in the beta subunit generated lower torque ( approximately 17 pN.nm), indicating that betaS174F is mechanically defective, the first such mutant reported. The defective rotation of betaS174F was suppressed by a second-site mutation, betaGly-149 to Ala, betaIle-163 to Ala, or betaIle-166 to Ala in the same subunit, but not by betaLeu-238 to Ala. These results suggest that the region between betaGly-149 and betaSer-174 plays an important role in the coupling between ATP hydrolysis and mechanical work.  相似文献   

6.
The ATP synthase β subunit hinge domain (βPhe148 ∼ βGly186, P-loop/α-helixB/loop/β-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F1 with the βSer174 to Phe mutation in the domain lowered the γ subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the βMet159, βIle163, and βAla167 residues of the β subunit are involved together with the mutant βPhe174. The network is expected to stabilize the conformation of βDP (nucleotide-bound form of the β subunit), resulting in increased activation energy for transition to βE (empty β subunit). The modeling further predicts that replacement of βMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of βS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the β subunit hinge domain is pertinent for the rotational catalysis.  相似文献   

7.
Glycosylphosphatidylinositol-specific phospholipase C (GPtdIns-PLC) is found in the protozoan parasite Trypanosoma brucei. A region of protein sequence similarity exists between the protozoan enzyme and eubacterial phosphatidylinositol-phospholipases C. The functional relevance of Cys80 and Gln81 of GPtdIns-PLC, both in this region, was tested with a panel of mutations at each position. Gln81Glu, Gln81Ala, Gln81Gly, Gln81Lys and Gln81Leu mutants were inactive. Cleavage of GPtdIns was detectable in Gln81Asn, although the specific activity decreased 500-fold, and kcat was reduced 50-fold. Thus an amide side-chain at residue 81 is essential for catalysis by GPtdIns-PLC. Sulfhydryl reagents inactivate GPtdIns-PLC, suggesting that a Cys could be close to the enzyme active site. Surprisingly, p-chloromercuriphenyl sulfonate (p-CMPS) is significantly more potent than N-ethylmaleimide, the less bulky compound. This knowledge prompted us to test whether replacement of Cys80 with an amino acid possessing a bulky side-chain would inactivate GPtdIns-PLC: Cys80Ala, Cys80Thr, Cys80Phe, Cys184Ala, and Cys269-270-273Ser were constructed for that purpose. Cys80Phe lacked enzyme activity, while Cys80Ala, Cys80Thr and Cys269-270-273Ser retained 33 to 100% of wild-type activity. Interestingly, the Cys80Ala and Cys80Thr mutants became resistant to p-CMPS, as predicted if the sulfhydryl reagent reacted with Cys80 in the wild-type enzyme to form a cysteinyl mercurylphenylsulfonate moiety, a bulky adduct that inactivated GPtdIns-PLC, similar to the Cys80Phe mutation. We conclude that a bulky side-chain (or adduct) at position 80 of GPtdIns-PLC abolishes enzyme activity. Together, these observations place Cys80 and Gln81 at, or close to, the active site of GPtdIns-PLC from T. brucei.  相似文献   

8.
A mutant strain KF43 of Escherichia coli defective in the beta subunit of H+-translocating ATPase (F0F1) was examined. In this mutant, replacement of Arg246 by His was identified by DNA sequencing of the mutant gene and confirmed by tryptic peptide mapping. The mutant F1-ATPase was defective in multi-site hydrolysis of ATP but was active in uni-site hydrolysis. Studies on the kinetics of uni-site hydrolysis indicated that the k1 (rate of ATP binding) was similar to that of the wild-type, but the k-1 (rate of release of ATP) could not be measured. The mutant enzyme had a k3 (rate of release of inorganic phosphate) about 15-fold higher than that of the wild-type and showed 3 orders of magnitude lower promotion from uni- to multi-site catalysis. These results suggest that Arg246 or the region in its vicinity is important in multi-site hydrolysis of ATP and is also related to the binding of inorganic phosphate. Reconstitution experiments using isolated subunits suggested that hybrid enzymes (alpha beta gamma complexes) carrying both the mutant and wild-type beta subunits were inactive in multi-site hydrolysis of ATP, supporting the notion that three intact beta subunits are required for activity of the F1 molecule.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.  相似文献   

11.
Apolipoprotein H (apoH, protein; APOH, gene) binds to negatively charged phospholipids, which triggers the production of a subset of autoantibodies against phospholipid in patients with autoimmune diseases. We have demonstrated that two naturally occurring missense mutations in the fifth domain of apoH, Trp316Ser and Cys306Gly, disrupt the binding of native apoH to phosphatidylserine [Sanghera, D. K., Wagenknecht, D. R., McIntyre, J. A. & Kamboh, M. I. (1997) Hum. Mol. Genet. 6, 311-316]. To confirm whether these are functional mutations, we mutagenized APOH cDNAs and transiently expressed them in COS-1 cells. The cardiolipin ELISA of wild-type and mutant recombinant apoH confirmed that the Gly306 and Ser316 mutations are responsible for abolishing the binding of recombinant apoH to cardiolipin. These mutations, however, had no effect on the levels of expression or secretion of recombinant apoH in transfected COS-1 cells. While the Cys306Gly mutation disrupts a disulfide bond between Cys306 and Cys281, which appears to be critical for clustering positively charged amino acids, the Trp316Ser mutation affects the integrity of an evolutionarily conserved hydrophobic sequence at position 313-316 (Leu-Ala-Phe-Trp), which is hypothesized to interact with anionic phospholipid. To test this hypothesis, we exchanged the remaining three hydrophobic amino acids with neutral amino acids by site-directed mutagenesis (Leu313Gly, Ala314Ser and Phe315Ser). Binding of the Leu313Gly and Phe315Ser mutants to cardiolipin was significantly reduced to 25% and 13%, respectively, of that of the wild-type. On the other hand, the Ala314Ser mutation showed normal cardiolipin binding. Taken together with our previous findings, these results strongly suggest that the configuration of the fifth domain of apoH, as well as the integrity of the highly conserved hydrophobic amino acids at positions 313-316, is essential for the binding of apoH to anionic phospholipid.  相似文献   

12.
This paper compares wild-type and two mutant beta-actins, one in which Ser14 was replaced by a cysteine, and a second in which both Ser14 and Asp157 were exchanged (Ser14-->Cys and Ser14-->Cys, Asp157-->Ala, respectively). Both of these residues are part of invariant sequences in the loops, which bind the ATP phosphates, in the interdomain cleft of actin. The increased nucleotide exchange rate, and the decreased thermal stability and affinity for DNase I seen with the mutant actins indicated that the mutations disturbed the interdomain coupling. Despite this, the two mutant actins retained their ATPase activity. In fact, the mutated actins expressed a significant ATPase activity even in the presence of Ca2+ ions, conditions under which actin normally has a very low ATPase activity. In the presence of Mg2+ ions, the ATPase activity of actin was decreased slightly by the mutations. The mutant actins polymerized as the wild-type protein in the presence of Mg2+ ions, but slower than the wild-type in a K+/Ca2+ milieu. Profilin affected the lag phases and elongation rates during polymerization of the mutant and wild-type actins to the same extent, whereas at steady-state, the concentration of unpolymerized mutant actin appeared to be elevated. Decoration of mutant actin filaments with myosin subfragment 1 appeared to be normal, as did their movement in the low-load motility assay system. Our results show that Ser14 and Asp157 are key residues for interdomain communication, and that hydroxyl and carboxyl groups in positions 14 and 157, respectively, are not necessary for ATP hydrolysis in actin.  相似文献   

13.
A sequence motif in the beta subunit of Escherichia coli F1 (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residue 149-156, where conserved residues are underlined) is one of the glycine-rich sequences found in many nucleotide binding proteins. In this study, we constructed a plasmid carrying all the F0F1 genes. This plasmid gave the highest membrane ATPase activity so far reported. Substitution of beta Gly149 by Ser suppressed the effect of the beta Ser174----Phe mutation (defective H(+)-ATPase), but beta Gly150----Ser substitution did not have this effect. A single mutation (beta Gly149----Ser or beta Gly150----Ser) gave active enzyme with altered divalent cation dependency and azide sensitivity: the beta Gly149----Ser mutant enzyme had 100-fold lower azide sensitivity and essentially no Ca(2+)-dependent activity, but had the wild-type level of Mg(2+)-dependent activity with active oxidative phosphorylation. Introduction of a beta Gly149----Ser or beta Gly150----Ser mutation with the beta Ser174----Phe mutation also lowered the Ca(2+)-dependent activity and azide sensitivity. Consistent with our previous findings (Takeyama, M., Ihara, K., Moriyama, Y., Noumi, T., Ida, K., Tomioka, N., Itai, A., Maeda, M., and Futai, M. (1990) J. Biol. Chem. 265, 21279-21284), a beta Thr156----Ala or Cys mutation impaired ATPase activity, suggesting that the hydroxyl moiety at position 156 is essential for the catalytic activity. The possible location of the catalytic site including divalent cation binding site(s) is discussed.  相似文献   

14.
Like other AAA proteins, Escherichia coli FtsH, a membrane-bound AAA protease, contains highly conserved aromatic and glycine residues (Phe228 and Gly230) that are predicted to lie in the central pore region of the hexamer. The functions of Phe228 and Gly230 were probed by site-directed mutagenesis. The results of both in vivo and in vitro assays indicate that these conserved pore residues are important for FtsH function and that bulkier, uncharged/apolar residues are essential at position 228. None of the point mutants, F228A, F228E, F228K, or G230A, was able to degrade sigma32, a physiological substrate. The F228A mutant was able to degrade casein, an unfolded substrate, although the other three mutants were not. Mutation of these two pore residues also affected the ATPase activity of FtsH. The F228K and G230A mutations markedly reduced ATPase activity, whereas the F228A mutation caused a more modest decrease in this activity. The F228E mutant was actually more active ATPase. The substrates, sigma32 and casein, stimulated the ATPase activity of wild type FtsH. The ATPase activity of the mutants was no longer stimulated by casein, whereas that of the three Phe228 mutants, but not the G230A mutant, remained sigma32-stimulatable. These results suggest that Phe228 and Gly230 in the predicted pore region of the FtsH hexamer have important roles in proteolysis and its coupling to ATP hydrolysis.  相似文献   

15.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

16.
Le NP  Omote H  Wada Y  Al-Shawi MK  Nakamoto RK  Futai M 《Biochemistry》2000,39(10):2778-2783
The three catalytic sites of the F(O)F(1) ATP synthase interact through a cooperative mechanism that is required for the promotion of catalysis. Replacement of the conserved alpha subunit Arg-376 in the Escherichia coli F(1) catalytic site with Ala or Lys resulted in turnover rates of ATP hydrolysis that were 2 x 10(3)-fold lower than that of the wild type. Mutant enzymes catalyzed hydrolysis at a single site with kinetics similar to that of the wild type; however, addition of excess ATP did not chase bound ATP, ADP, or Pi from the catalytic site, indicating that binding of ATP to the second and third sites failed to promote release of products from the first site. Direct monitoring of nucleotide binding in the alphaR376A and alphaR376K mutant F(1) by a tryptophan in place of betaTyr-331 (Weber et al. (1993) J. Biol. Chem. 268, 20126-20133) showed that the catalytic sites of the mutant enzymes, like the wild type, have different affinities and therefore, are structurally asymmetric. These results indicate that alphaArg-376, which is close to the beta- or gamma-phosphate group of bound ADP or ATP, respectively, does not make a significant contribution to the catalytic reaction, but coordination of the arginine to nucleotide filling the low-affinity sites is essential for promotion of rotational catalysis to steady-state turnover.  相似文献   

17.
Using site-directed mutagenesis, Tyr-307, Tyr-341, or Tyr-364, supposedly located at the adenine nucleotide binding site(s) of the beta subunits of F1-ATPase from the thermophilic bacterium PS3, was replaced with Phe or Cys. The alpha 3 beta 3 complexes reconstituted from the alpha subunits and individual mutant beta subunits hydrolyzed ATP. Thus, neither the hydroxyl groups nor the aromatic rings in these positions are required for ATPase activity of F1-ATPase.  相似文献   

18.
Solution structure of a mini IGF-1.   总被引:2,自引:1,他引:1       下载免费PDF全文
Mini insulin-like growth factor 1, an inactive insulin-like growth factor 1 mutant lacking the C region, was studied by 2D NMR spectroscopy. Resonances were assigned for almost all protons of the 57 amino acid residues. The 3D structure of the protein was determined by distance geometry methods. Three helical segments; Ala 8-Cys 18, Gly 42-Phe 49, and Leu 54-Cys 61, were identified, corresponding to those present in wild-type insulin-like growth factor 1 and in single-chain insulin. Their relative orientation, however, was found to be changed. This change is connected with a displacement of the Phe 23-Tyr 24-Phe 25-Asn 26 beta-strand-like segment, i.e., of aromatic side chains known to be important for receptor binding. Thus, deletion of the C region of IGF-1 results in a substantial tertiary structural rearrangement that accounts for the loss of receptor affinity.  相似文献   

19.
Type II DNA topoisomerases catalyze changes in DNA topology and use nucleotide binding and hydrolysis to control conformational changes required for the enzyme reaction. We examined the ATP hydrolysis activity of a bisdioxopiperazine-resistant mutant of human topoisomerase II alpha with phenylalanine substituted for tyrosine at residue 50 in the ATP hydrolysis domain of the enzyme. This substitution reduced the DNA-dependent ATP hydrolysis activity of the mutant protein without affecting the relaxation activity of the enzyme. A similar but stronger effect was seen when the homologous mutation (Tyr28 --> Phe) was introduced in yeast Top2. The ATPase activities of human TOP2alpha(Tyr50 --> Phe) and yeast Top2(Tyr28 --> Phe) were resistant to both bisdioxopiperazines and the ATPase inhibitor sodium orthovanadate. Like bisdioxopiperazines, vanadate traps the enzyme in a salt-stable closed conformation termed the closed clamp, which can be detected in the presence of circular DNA substrates. Consistent with the vanadate-resistant ATPase activity, salt-stable closed clamps were not detected in reactions containing the yeast or human mutant protein, vanadate, and ATP. Similarly, ADP trapped wild-type topoisomerase II as a closed clamp, but could not trap either the human or yeast mutant enzymes. Our results demonstrate that bisdioxopiperazine-resistant mutants exhibit a difference in the stability of the closed clamp formed by the enzyme and that this difference in stability may lead to a loss of DNA-stimulated ATPase. We suggest that the DNA-stimulated ATPase of topoisomerase II is intimately connected with steps that occur while the N-terminal domain of the enzyme is dimerized.  相似文献   

20.
In the N-terminal domain of thermolysin, two polypeptide strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122, are connected by a short loop, Asn116-Gly117, to form an anti-parallel β-sheet. The Asn112-Trp115 strand is located in the active site, while the Ser118-Tyr122 strand and the Asn116-Gly117 loop are located outside the active site. In this study, we explored the catalytic role of Gly117 by site-directed mutagenesis. Five variants, G117A (Gly117 is replaced by Ala), G117D, G117E, G117K, and G117R, were produced by co-expressing in Escherichia coli the mature and pro domains as independent polypeptides. The production levels were in the order G117E > wild type > G117K, G117R > G117D. G117A was hardly produced. This result is in contrast to our previous one that all 72 active-site thermolysin variants were produced at the similar levels whether they retained activity or not (M. Kusano et al. J. Biochem., 145, 103-113 (2009)). G117E exhibited lower activity in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and higher activity in the hydrolysis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester than the wild-type thermolysin. G117K and G117R exhibited considerably reduced activities. This suggests that Gly117 plays an important role in the activity and stability of thermolysin, presumably by affecting the geometries of the Asn112-Trp115 and Ser118-Tyr122 strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号