首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DAPP-1 (dual-adaptor for phosphotyrosine and 3-phosphoinositides-1) is a broadly distributed pleckstrin homology (PH) and Src homology 2 domain containing protein that can bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and can be phosphorylated on tyrosine 139 and internalised in response to activation of type I phosphoinositide 3-kinases (PI3K). Tyrosine phosphorylation of DAPP-1 appears important for appropriate intracellular targeting and creates a potential binding site for Src homology 2 domain-containing proteins. In endothelial cells overexpressing wild-type platelet-derived growth factor beta (PDGFbeta) receptors, which express Bmx and Src as their major Btk (Bruton's tyrosine kinase) family and Src family tyrosine kinases, respectively, PDGF can stimulate PI3K-dependent tyrosine phosphorylation of DAPP-1. Transient overexpression of Src most effectively, compared with Bmx and Syk, augments basal and PDGF-stimulated tyrosine phosphorylation of DAPP-1, whereas overexpression of dominant-negative Src, but not dominant-negative Bmx, inhibits PDGF-stimulated phosphorylation of DAPP-1. Cells expressing mutant PDGFbeta (Y579F/Y581F) receptors (which fail to bind and activate Src-type kinases) fail to tyrosine phosphorylate DAPP-1 in response to PDGF. We show that in DT40 chicken B cell lines, antibody stimulation leads to PI3K-dependent tyrosine phosphorylation of DAPP-1 that is lost in Lyn- or Syk-deficient cell lines but not Btk-deficient cell lines. PI3K-dependent activation of PKB is only lost in Syk-deficient lines. Finally, in vitro we find lipid-modified Src to be the most effective DAPP-1 tyrosine kinase (versus Syk, Lyn, Btk, and Bmx); phosphorylation of DAPP-1 but not Src autophosphorylation is stimulated approximately 10-fold by PtdIns(3,4,5)P(3) (IC(50) = 150 nm) and phosphatidylinositol 3,4-bisphosphate but not by their nonbiological diastereoisomers and depends on PH domain mediated binding of DAPP-1 to PtdIns(3,4,5)P(3)-containing membranes. We conclude that Src family kinases are responsible for tyrosine phosphorylation of DAPP-1 in vivo and that PI3K regulation is at the level of PH domain-mediated translocation of DAPP-1 to PI3K products in the membrane.  相似文献   

2.
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.  相似文献   

3.
We investigated the involvement of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the initiation of signal transduction by nerve growth factor (NGF) in the rat pheochromocytoma PC12 cell line. PtdIns 3-kinase catalyzes the formation of phosphoinositides with phosphate in the D-3 position of the inositol ring and previously has been found to associate with other activated protein tyrosine kinases, including growth factor receptor tyrosine kinases. Anti-phosphotyrosine immunoprecipitates had PtdIns 3-kinase activity that reached a maximum (9 times the basal activity) after a 5-min exposure of PC12 cells to NGF (100 ng/ml). Since NGF activates the tyrosine kinase activity of gp140trk, the protein product of the trk proto-oncogene, we also examined the association of PtdIns 3-kinase with gp140trk. Anti-gp140trk immunoprecipitates from NGF-stimulated PC12 cells had increased PtdIns 3-kinase activity compared to that of unstimulated cells, and larger increases were detected in cells overexpressing gp140trk, indicating that PtdIns 3-kinase associates with gp140trk. NGF produced large increases in [32P]phosphatidylinositol 3,4-bisphosphate and [32P]phosphatidylinositol 3,4,5-trisphosphate in PC12 cells labeled with [32P]orthophosphate, indicating an increase in PtdIns 3-kinase activity in intact cells. Using an anti-85-kDa PtdIns 3-kinase subunit antibody, we found that NGF promoted the tyrosine phosphorylation of an 85-kDa protein and two proteins close to 110 kDa. These studies demonstrate that NGF activates PtdIns 3-kinase and promotes its association with gp140trk and also show that NGF promotes the tyrosine phosphorylation of the 85-kDa subunit of PtdIns 3-kinase. Thus, PtdIns 3-kinase activation appears to be involved in differentiation as well as mitogenic responses.  相似文献   

4.
Ligand-activated epidermal growth factor (EGF) receptors are coupled to the phosphatidylinositol (PtdIns) pathway to stimulate formation of two second messengers, inositol trisphosphate and diacylglycerol. Investigation of the interaction between EGF receptors and phosphoinositide kinases identified PtdIns and PtdIns(4)P kinase activities in extensively washed EGF receptor immunoprecipitates. Studies using COOH-terminal truncation mutant EGF receptors and immunoisolation by an EGF receptor peptide anti-serum in the presence of peptide (residues 644-666) indicated that the phosphoinositide kinases were associated with the region located between the inner membrane boundary and the kinase domain of the EGF receptor. In vivo cross-linking identified four tyrosine phosphorylated proteins of approximately 135, 62, 55, and 47 kDa associated with the EGF receptor. After EGF stimulation, PtdIns and PtdIns(4)P kinase activities were markedly increased among proteins isolated by monoclonal antiphosphotyrosine antibodies. The activities associated with the EGF receptor and with tyrosine-phosphorylated proteins were identified as PtdIns4-and PtdIns(4)P 5-kinase. Tyrosine dephosphorylation did not alter the activity of the prominent PtdIns(4)P 5-kinase activity. These results indicate that the phosphoinositide kinases are associated with and tyrosine phosphorylated by the EGF receptor as part of the mechanism coordinating responses between signal transduction pathways but do not demonstrate that tyrosine phosphorylation of PtdIns(4)P 5-kinase is sufficient to activate the enzyme.  相似文献   

5.
Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P(3), which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P(3) in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P(3) synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P(3) production using a specific monoclonal anti-PtdIns(3,4,5)P(3) antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P(3) staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P(3) levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P(3) production, measured by the membrane translocation of an epitope-tagged (BTK)PH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4-5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P(3) hydrolysis by measuring the decay of the PtdIns(3,4,5)P(3) signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P(3) membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P(3) turnover occurs within seconds of synthesis. In contrast, (BTK)PH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P(3) by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P(3) accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P(3)] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P(3) in vitro. These data suggest that anti-PtdIns(3,4,5)P(3) antibodies are a useful tool to detect localized PtdIns(3,4,5)P(3), and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.  相似文献   

6.
Polarized cell movement is triggered by the development of a PtdIns(3,4,5)P(3) gradient at the membrane, which is followed by rearrangement of the actin cytoskeleton. The WASP family verprolin homologous protein (WAVE) is essential for lamellipodium formation at the leading edge by activating the Arp2/3 complex downstream of Rac GTPase. Here, we report that WAVE2 binds to PtdIns(3,4,5)P(3) through its basic domain. The amino-terminal portion of WAVE2, which includes the PtdIns(3,4,5)P(3)-binding sequence, was localized at the leading edge of lamellipodia induced by an active form of Rac (RacDA) or by treatment with platelet-derived growth factor (PDGF). Production of PtdIns(3,4,5)P(3) at the cell membrane by myristoylated phosphatidylinositol-3-OH kinase (PI(3)K) is sufficient to recruit WAVE2 in the presence of dominant-negative Rac and latrunculin, demonstrating that PtdIns(3,4,5)P(3) alone is able to recruit WAVE2. Expression of a full-length mutant of WAVE2 that lacks the lipid-binding activity inhibited proper formation of lamellipodia induced by RacDA. These results suggest that one of the products of PI(3)K, PtdIns(3,4,5)P(3), recruits WAVE2 to the polarized membrane and that this recruitment is essential for lamellipodium formation at the leading edge.  相似文献   

7.
BACKGROUND: Phosphoinositide (PI) 3-kinase and its second messenger products, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)), play important roles in signalling processes crucial for cell movement, differentiation and survival. Previously, we isolated a 32kDa PtdIns(3,4,5)P(3)-binding protein from porcine leukocytes. This protein contains an amino-terminal Src homology 2 (SH2) domain and a carboxy-terminal pleckstrin homology (PH) domain, and is identical to the recently described DAPP1 (also known as PHISH or Bam32) protein. Here, we characterised the subcellular distribution of DAPP1 in response to cell stimulation. RESULTS: When expressed transiently in porcine aortic endothelial (PAE) cells, DAPP1 translocated from the cytosol to the plasma membrane in response to platelet-derived growth factor (PDGF). This translocation was dependent on both PI 3-kinase activity and an intact DAPP1 PH domain. Following recruitment to the plasma membrane, DAPP1 entered the cell in vesicles. Similar responses were seen in DT40 chicken B cells following antibody treatment, and Rat-1 fibroblasts following epidermal growth factor (EGF) or PDGF treatment. Colocalisation studies in PAE cells suggested entry of DAPP1 by endocytosis in a population of early endosomes containing internalised PDGF-beta receptors. DAPP1 also underwent PI 3-kinase-dependent phosphorylation on Tyr139 in response to PDGF stimulation, and this event was involved in the vesicular response. CONCLUSIONS: This is the first report of plasma-membrane recruitment and endocytosis of a PI 3-kinase effector protein in response to cell stimulation. The results suggest a novel role for DAPP1 in endosomal trafficking or sorting.  相似文献   

8.
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.  相似文献   

9.
Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a second messenger produced in response to agonist stimulation. Traditionally, visualization of phosphoinositide polyphosphates (PtdInsP(n)) in living cells is accomplished using chimeric green fluorescent protein (GFP)-pleckstrin homology (PH) domain proteins, while PtdInsP(n) quantitation is accomplished by extraction and separation of radiolabeled cellular PtdInsP(n)s. Here we describe preparation of a covalent protein-PtdIns(3,4,5)P(3) immunogen, characterization of binding selectivity of an anti-PtdIns(3,4,5)P(3) IgM, and immunodetection of PtdIns(3,4,5)P(3) in stimulated mammalian cells. This antibody has greater than three orders of magnitude selectivity for binding PtdIns(3,4,5)P(3) relative to its precursor, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and is therefore optimal for studies of cell function. The immunodetection in platelet-derived growth factor (PDGF)-stimulated NIH 3T3 cells was benchmarked against HPLC analysis of [3H]-myo-inositol-labeled cellular PtdInsP(n)s. In addition, the changes in subcellular amounts and localizations of both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) in stimulated NIH 3T3 fibroblasts and human neutrophils were observed by immunofluorescence. In insulin- or PDGF-stimulated fibroblasts, PtdIns(3,4,5)P(3) levels increased in the cytoplasm, peaking at 10 min. In contrast, increases in the PtdIns(4,5)P(2) levels were detected in nuclei, corresponding to the production of new substrate following depletion by phosphoinositide (PI) 3-kinase.  相似文献   

10.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

11.
The effects of epidermal growth factor transforming growth factor beta (TGF beta) and other growth factors on the proliferation and differentiation of a cell line derived from rat intestinal crypt epithelium (IEC-6) were defined. Incorporation of [3H]-thymidine was stimulated 1.4-2.4 fold by insulin, insulin like growth factor (IGF), platelet derived growth factor (PDGF), epidermal growth factor (EGF) and 2% fetal calf serum (FCS) respectively. Additive stimulation was observed when FCS was supplemented by insulin,IGF-I or PDGF but not EGF. Incorporation of [3H]-thymidine by IEC-6 was strongly inhibited by TGF beta with greater than 80% inhibition of incorporation at concentration approximately equal to 2.0 pM. IEC-6 cells bound 4.1 +/- 0.15 X 10(4) molecules TGF beta/cell and appeared to have only a single class of high affinity receptors (Kd approximately equal to 0.5 pM). TGF beta inhibition was unaffected by the presence of insulin or IGF-I suggesting it inhibits proliferation at a step subsequent to that at which these growth factors stimulate [3H]-thymidine incorporation. TGF beta also reduced the stimulation induced by FCS by 65%. In contrast EGF reduced TGF beta inhibition by 60%. IEC-6 cells demonstrated the appearance of sucrase activity after greater than 18 hours treatment with TGF beta. These findings suggest that TGF beta may inhibit proliferative activity and promote the development of differentiated function in intestinal epithelial cells.  相似文献   

12.
Short-term incubation of adult rat hepatocytes with epidermal growth factor (EGF) caused tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 when the cells had been submitted to primary culture from 1-18 h. Tyrosine-phosphorylated IRS-1 and IRS-2 bound to the regulatory subunit (p85) of phosphatidylinositol (PtdIns) 3-kinase, thereby activating the enzymic activity. Tyrosine phosphorylation of the IRSs and activation of PtdIns 3-kinase in 3 h cultured hepatocytes both proceeded similarly to the same actions of insulin; the activation was rapid and transient, with peak values at 15-30 s and with similar EC(50)s in the nM range in both cases. A possible involvement of insulin receptors in these insulin-like actions of EGF was excluded by the following three lines of evidence. Insulin caused tyrosine phosphorylation of the insulin receptor beta-subunit but EGF did not. In contrast, the EGF receptor was phosphorylated by EGF, but the insulin receptor was not. The actions of EGF, but not those of insulin, were inhibited by AG1478, a selective inhibitor of EGF receptor tyrosine kinase. Cultured hepatocytes exposed to insulin or insulin-like growth factor-I (IGF-I) for a short period responded to the subsequent addition of EGF, whereas EGF-treated cells responded to insulin. The cells, however, displayed receptor desensitization under the same conditions, that is, no response was observed upon repeated addition of the same agonist, EGF, insulin or IGF-I. Thus, the EGF receptor-initiated signalling was mediated by PtdIns 3-kinase associated with tyrosine-phosphorylated IRSs in short-term cultured rat hepatocytes.  相似文献   

13.
We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia. Moreover, we found that upon EGF stimulation 3-phosphoinositide-dependent protein kinase-1 (PDK1) was also recruited to nascent lamellipodia in an Akt-dependent manner. Because PDK1 is known to activate Ral GTPase and because Ral is required for EGF-induced lamellipodial protrusion, we speculated that the PDK1-Akt complex may be indispensable for the induction of lamellipodia. In agreement with this idea, EGF-induced lamellipodia formation was promoted by the overexpression of Akt and inhibited by an Akt inhibitor or a Ral-binding domain of Sec5. These results identified the Akt-PDK1 complex as an upstream positive regulator of Ral GTPase in the induction of lamellipodial protrusion.  相似文献   

14.
Platelet-derived growth factor (PDGF) causes an acute decrease in the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an increase in the phosphorylation state of the EGF receptor at threonine654. The hypothesis that PDGF action to regulate the EGF receptor is mediated by the activation of protein kinase C and the subsequent phosphorylation of EGF receptor threonine654 was tested. The human receptors for PDGF and EGF were expressed in Chinese hamster ovary cells that lack expression of endogenous receptors for these growth factors. The heterologous regulation of the EGF receptor by PDGF was reconstituted in cells expressing [Thr654]EGF receptors or [Ala654]EGF receptors. PDGF action was also observed in phorbol ester down-regulated cells that lack detectable protein kinase C activity. Together these data indicate that neither protein kinase C nor the phosphorylation of EGF receptor threonine654 is required for the regulation of the apparent affinity of the EGF receptor by PDGF.  相似文献   

15.
The response of AKR-2B mouse fibroblasts, which express approximately equal numbers of platelet-derived growth factor (PDGF)-alpha and -beta receptors on their surface (V. Hoppe et al. Eur. J. Biochem. 187, 207-214, 1990) to all three isoforms of PDGF, was studied. All isoforms stimulated early events, i.e., receptor autophosphorylation on tyrosine, total cellular phosphorylation, increase in 32P-labeled phospholipid content, but there was no correlation between the extents measured for the different effects. Although rPDGF-AA effectively stimulated these early events, it was unable to induce [3H]thymidine incorporation and cell growth whereas rPDGF-BB and -AB stimulated the division of more than 90% of the cells. This activity was restored by addition of insulin-like growth factor I (IGF-I), which itself exhibited only a low mitogenic activity. rPDGF-AB or -BB did not require the presence of IGF-I to fully stimulate cells for [3H]thymidine incorporation and cell division. Apparently, rPDGF-AA induced only a "competence" state of the cells whereas rPDGF-AB or -BB was also able to initiate "progression". It is speculated that some early events occurring during the competence phase might be part of a "maintenance" program elicited by growth factors.  相似文献   

16.
A phosphatidylinositol-3 (PI-3) kinase activity of unknown biological function associates with tyrosine kinase-containing proteins, including a number of growth factor receptors after ligand stimulation. In the beta platelet-derived growth factor (beta PDGF) receptor, phosphorylation of a specific tyrosine residue within the kinase insert domain was required for its interaction with this enzyme. We show that substitutions of phenylalanine for tyrosine residue 731 or 742 within the kinase insert domain of the alpha PDGF receptor do not impair PDGF-induced tyrosine phosphorylation of the receptor or of an in vivo substrate, phospholipase C-gamma. Moreover, phosphatidylinositol turnover in response to ligand stimulation is unaffected. However, both lesions markedly impair receptor association with PI-3 kinase. Antiphosphotyrosine antibody-recoverable PI-3 kinase was also dramatically reduced in PDGF-stimulated cells expressing either mutant receptor. Since neither mutation abolished PDGF-induced mitogenesis or chemotaxis, we conclude that alpha PDGF receptor-associated PI-3 kinase activity is not required for either of these major PDGF signalling functions.  相似文献   

17.
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.  相似文献   

18.
Phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P(3)) plays important signaling roles in immune cells, particularly in the control of activating pathways and of survival. It is formed by a family of phosphatidylinositol 3'-kinases (PI3Ks) which phosphorylate PtdIns(4,5)P(2) in vivo. In human neutrophils, the levels of PtdIns(3,4,5)P(3) increase rapidly at the leading edge of locomoting cells and at the base of the phagocytic cup during FcgammaR-mediated particle ingestion. Even though these, and other, data indicate that PtdIns(3,4,5)P(3) is involved in the control of chemotaxis and phagocytosis in human neutrophils, the mechanisms that regulate its levels have yet to be fully elucidated in these cells. We evaluated the potential implication of SHIP1 and PTEN, two lipid phosphatases that utilize PtdIns(3,4,5)P(3) as substrate, in the signaling pathways called upon in response to CD32a cross-linking. We observed that the cross-linking of CD32a resulted in a transient accumulation of PtdIns(3,4,5)P(3). CD32a cross-linking also induced the tyrosine phosphorylation of SHIP1, its translocation to the plasma membrane and its co-immunoprecipitation with CD32a. CD32a cross-linking had no effect on the level of serine/threonine phosphorylation of PTEN and did not stimulate its translocation to the plasma membrane. PP2, a Src kinase inhibitor, inhibited the tyrosine phosphorylation of SHIP1 as well as its translocation to the plasma membrane. Wortmannin, a PI3K inhibitor, had no effect on either of these two indices of activation of SHIP1. Our results indicate that SHIP1 is involved, in a Src kinase-dependent manner, in the early signaling events observed upon the cross-linking of CD32a in human neutrophils.  相似文献   

19.
The epidermal growth factor (EGF) receptor exists in a monomeric (170 kDa) form and in several aggregated states (360 kDa, greater than 500 kDa). The hypothesis that the oligomerization of the receptor is required for the stimulation of the kinase was tested by correlating the oligomeric state of the receptor with the protein kinase activity. EGF and sphingosine stimulate the phosphorylation of an exogenous peptide substrate by the receptor to an equal extent. Chemical cross-linking using disuccinimidyl suberate and the analysis of EGF receptor complexes by Western blotting demonstrated that EGF caused the aggregation of receptors. Similar results were obtained when [32P]phosphate-labeled receptors were cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. These results were confirmed by sucrose density gradient sedimentation analysis. In contrast to the effects of EGF, incubation of EGF receptors with sphingosine did not cause the oligomerization of the receptors. These data demonstrate that the EGF receptor kinase can be stimulated independently of the aggregation of the receptors.  相似文献   

20.
PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells   总被引:1,自引:0,他引:1  
Cultured adherent cells divide on the substratum, leading to formation of the cell monolayer. However, how the orientation of this anchorage-dependent cell division is regulated remains unknown. We have previously shown that integrin-dependent adhesion orients the spindle parallel to the substratum, which ensures this anchorage-dependent cell division. Here, we show that phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) is essential for this spindle orientation control. In metaphase, PtdIns(3,4,5)P3 is accumulated in the midcortex in an integrin-dependent manner. Inhibition of phosphatidylinositol-3-OH kinase (PI(3)K) reduces the accumulation of PtdIns(3,4,5)P3 and induces spindle misorientation. Introduction of PtdIns(3,4,5)P3 to these cells restores the midcortical accumulation of PtdIns(3,4,5)P3 and proper spindle orientation. PI(3)K inhibition causes dynein-dependent spindle rotations along the z-axis, resulting in spindle misorientation. Moreover, dynactin, a dynein-binding partner, is accumulated in the midcortex in a PtdIns(3,4,5)P3-dependent manner. We propose that PtdIns(3,4,5)P3 directs dynein/dynactin-dependent pulling forces on spindles to the midcortex, and thereby orients the spindle parallel to the substratum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号