共查询到20条相似文献,搜索用时 15 毫秒
1.
Jianrong Wu Huancheng Ma Xingliang Xu Na Qiao Shitan Guo Fang Liu Donghua Zhang Liping Zhou 《Annals of botany》2013,111(6):1181-1187
Background and Aims
Orchid mycorrhizas exhibit a unique type of mycorrhizal symbiosis that occurs between fungi and plants of the family Orchidaceae. In general, the roots of orchids are typically coarse compared with those of other plant species, leading to a considerably low surface area to volume ratio. As a result, orchids are often ill-adapted for direct nutrient acquisition from the soil and so mycorrhizal assocaitions are important. However, the role of the fungal partners in the acquisition of inorganic and organic N by terrestrial orchids has yet to be clarified.Methods
Inorganic and amino acid N uptake by non-mycorrhizal and mycorrhizal Cymbidium goeringii seedlings, which were grown in pots in a greenhouse, was investigated using a 15N-labelling technique in which the tracer was injected at two different soil depths, 2·5 cm or 7·5 cm. Mycorrhizal C. goeringii seedlings were obtained by inoculation with three different mycorrhizal strains isolated from the roots of wild terrestrial orchids (two C. goeringii and one C. sinense).Key Results
Non-mycorrhizal C. goeringii primarily took up NO3− from tracers injected at 2·5-cm soil depth, whereas C. goeringii inoculated with all three mycorrhiza primarily took up NH4+ injected at the same depth. Inoculation of the mycorrhizal strain MLX102 (isolated from adult C. sinense) on C. goeringii roots only significantly increased the below-ground biomass of the C. goeringii; however, it enhanced 15NH4+ uptake by C. goeringii at 2·5-cm soil depth. Compared to the uptake of tracers injected at 2·5-cm soil depth, the MLX102 fungal strain strongly enhanced glycine-N uptake by C. goeringii from tracers injected at 7·5-cm soil depth. Cymbidium goeringii inoculated with CLB113 and MLX102 fungal strains demonstrated a similar N uptake pattern to tracers injected at 2·5-cm soil depth.Conclusions
These findings demonstrate that mycorrhizal fungi are able to switch the primary N source uptake of a terrestrial orchid, in this case C. goeringii, from NO3− to NH4+. The reasons for variation in N uptake in the different soil layers may be due to possible differentiation in the mycorrhizal hyphae of the C. goeringii fungal partner. 相似文献2.
The hitherto unknown relationships between the European orchid Spiranthes spiralis (L.) Chevall and its internally associated fungi were explored by a combined approach involving microscopy-based investigations at a morpho-histological level as well as by molecular analyses of the identity of the eukaryotic endophytes present in the root tissue of the plant. We found that this orchid which is currently reported to have a vulnerable status in northern Italy, can host and interact with at least nine types of fungi. Some of these fungi show similarity to mycorrhizal genera found in orchids such as the Ceratobasidium-Rhizoctonia group. Other fungi found are from the genera Davidiella (Ascomycota), Leptosphaeria (Ascomycota), Alternaria (Ascomycota), and Malassezia (Basidiomycota), some of which until have not previously been reported to have an endophytic relationship with plants. The repeated occurrence of often pathogenic fungi such as Fusarium oxysporum, Bionectria ochroleuca, and Alternaria sp., within healthy specimens of this orchid suggests a tempered interaction with species that are sometimes deleterious to non-orchid plants. The fact is reminiscent of the symbiotic compromise established by orchids with fungi of the rhizoctonia group. 相似文献
3.
The objective of this work was to isolate and identify fungi associated with R. reniformis in cotton roots. Soil samples were collected in cotton fields naturally infested with R. reniformis and from cotton stock plants cultured in the greenhouse. Nematodes extracted from the soil were observed under the stereoscope, and discolored eggs and vermiform stages colonized with mycelia were cultured on 1.5% water agar supplemented with antibiotics, and incubated at 27°C. Identification of the nematophagous fungi was based on the morphological characters, and the ITS regions and 5.8S rDNA amplified by PCR using the primers ITS1 and ITS4. The parasitism percentage on vermiform nematodes from greenhouse samples was 21.2%, and the percentages from cotton fields in Limestone, Henry, and Baldwin counties in Alabama were 3%, 23.2%, and 5.6%, respectively. A total of 12 fungi were identified from R. reniformis vermiform stages and eggs. The most frequently isolated fungi were Arthrobotrys dactyloides (46%) and Paecilomyces lilacinus (14%), followed by Phoma exigua (4.8%), Penicillium waksmanii and Dactylaria brochophaga (3.6%), Aspergillus glaucus group (2.4%). Cladosporium herbarum, Cladosporium cladiosporioides, Fusarium oxysporum, Torula herbarum, Aspergillus fumigatus, and an unidentified basidiomycete were less frequent (1.2%). A high percentage (16.8%) of fungi from colonized nematodes was not cultivable on our media. Out of those 12 fungi, only four have been previously reported as nematophagous fungi: three isolates of Arthrobotrys dactyloides, and one isolate of Dactylaria brochopaga, Paecilomyces lilacinus, and Fusarium oxysporum. Molecular identification of Arthrobotrys dactyloides and Dactylaria brochopaga was consistent with the morphological identification, placing these two fungi in the new genus Drechslerella as proposed in the new Orbilaceae classification. 相似文献
4.
《Fungal biology》2022,126(8):534-546
While many Australian terrestrial orchids have highly specialized mycorrhizal associations, we tested the hypothesis that the geographically widespread orchid genus Cryptostylis associates with a diversity of fungal species. Using fungal isolation and molecular approaches, we investigated the mycorrhizal associations of five Australian Cryptostylis species (27 sites sampled) and included limited sampling from three Asiatic Cryptostylis species (two sites). Like related orchid genera, Tulasnellaceae formed the main fungal associations of the Cryptostylis species we sampled, although some ectomycorrhizal, ericoid and saprotrophic fungi were detected infrequently. Each species of Australian Cryptostylis associated with three to seven Tulasnella Operational Taxonomic Units (OTUs), except for C. hunteriana where only one Tulasnella OTU was detected. In total, eleven Tulasnella OTUs associated with Australian Cryptostylis. The Asiatic Cryptostylis associated with four different Tulasnella OTUs belonging to the same lineage as the Australian species. While five Tulasnella OTUs (T. australiensis, T. prima, T. warcupii, T. densa, and T. punctata) were used by multiple species of Australian Cryptostylis, the most commonly used OTU differed between orchid species. The association with different Tulasnella fungi by Cryptostylis species co-occurring at the same site suggests that in any given environmental condition, Cryptostylis species may intrinsically favour different fungal OTUs. 相似文献
5.
Hidetaka Umata 《Mycoscience》1995,36(3):369-372
Seed germination test ofGaleola altissima was carried out with five aphyllophorales fungi:Erythromyces crocicreas, Ganoderma australe, Loweporus tephroporus, Microporus affinus andPhellinus sp.. All five species were effective for seed germination of the orchid.Erythromyces crocicreas, which has hitherto been regarded as the only endomycorrhizal fungus of the orchid, was confirmed to be effective for further development of the orchid. 相似文献
6.
白及内生真菌多样性研究 总被引:1,自引:0,他引:1
白及( Bletilla striata)是兰科地生型多年生植物,也是我国传统中药材之一。利用菌根技术进行白及的保护和人工栽培,需要获得白及可培养的内生真菌。该研究以广西野生的白及根和叶为材料,采用分离培养法分离内生真菌,并结合真菌形态特征,及其核糖体的转录间隔区( ITS)序列分析,确定内生真菌的分类地位。结果表明:从2株白及植物90块组织中分离获得37株内生真菌,鉴定为15个分类单元,由9个属组成,分属于2门4纲7目8科,包括锤舌菌纲( Leotiomycetes)、座囊菌纲( Dothideomycetes)和粪壳菌纲( Sordariomy-cetes),伞菌纲( Agaricomycetes)。从根中分离获得内生真菌12种,蜡壳菌属为优势属;从叶中分离获得内生真菌3种,刺盘孢属为优势属;刺盘孢菌属( Colletotrichum)和蜡壳菌属( Sebacina)真菌的相对多度值均达到20%;4株担子菌均分布于根中,叶组织中未有分布。根组织中内生真菌的多样性指数(H=1.863)高于叶组织(1.098)。该研究结果及其所分离培养的担子菌类真菌,为更好地利用菌根技术进行白及等兰科植物资源的保护与可持续利用奠定了基础。 相似文献
7.
Background and Aims
Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant.Methods
Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare ‘Fleet’ (barley) as the host plant. This study consisted of two greenhouse pot experiments.Key Results
Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite''s host plant on haustoria production and caused significant growth depression of P. tricolor.Conclusions
AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds. 相似文献8.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%. 相似文献
9.
10.
11.
Sunshine A. Van Bael Hermógenes Fernández-Marín Mariana C. Valencia Enith I. Rojas William T. Wcislo Edward A. Herre 《Proceedings. Biological sciences / The Royal Society》2009,276(1666):2419-2426
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest. 相似文献
12.
Belinda J. Davis Ryan D. Phillips Magali Wright Celeste C. Linde Kingsley W. Dixon 《Annals of botany》2015,116(3):413-421
Background and Aims Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycorrhizae used by Pheladenia deformis, one of the few orchid species to occur across the Australian continent. Specifically, it examines whether P. deformis is widely distributed through using multiple fungi or a single widespread fungus, and if the fungi used by Australian orchids are widespread at the continental scale.Methods Mycorrhizal fungi were isolated from P. deformis populations in eastern and western Australia. Germination trials using seed from western Australian populations were conducted to test if these fungi supported germination, regardless of the region in which they occurred. A phylogenetic analysis was undertaken using isolates from P. deformis and other Australian orchids that use the genus Sebacina to test for the occurrence of operational taxonomic units (OTUs) in eastern and western Australia.Key Results With the exception of one isolate, all fungi used by P. deformis belonged to a single fungal OTU of Sebacina. Fungal isolates from eastern and western Australia supported germination of P. deformis. A phylogenetic analysis of Australian Sebacina revealed that all of the OTUs that had been well sampled occurred on both sides of the continent.Conclusions The use of a widespread fungal OTU in P. deformis enables a broad distribution despite high mycorrhizal specificity. The Sebacina OTUs that are used by a range of Australian orchids occur on both sides of the continent, demonstrating that the short-range endemism prevalent in the orchids is not driven by fungal species with narrow distributions. Alternatively, a combination of specific edaphic requirements and a high incidence of pollination by sexual deception may explain biogeographic patterns in southern Australian orchids. 相似文献
13.
Jonathan R. De Long Nigel D. Swarts Kingsley W. Dixon Louise M. Egerton-Warburton 《Annals of botany》2013,111(3):409-418
Background and Aims
Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed.Methods
Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken.Key Results
It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media–mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility.Conclusions
The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats. 相似文献14.
Osamu Shimmi Shinya Matsuda Masatsugu Hatakeyama 《Proceedings. Biological sciences / The Royal Society》2014,281(1789)
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects. 相似文献
15.
16.
The mycorrhizal fungi of Stigmatodactylus sikokianus (Orchidaceae) were isolated and identified to be nearly related to Sebacina spp. in Sebacinaceae (Basidiomycota) by a neighbor-joining phylogenetic analysis based on the sequences of the ITS region
of nuclear rDNA. In spite of the geographically separated samplings, high sequence similarity was found among the obtained
DNA sequences, which suggested that S. sikokianus might be highly specialized to the group of fungi. It is known that Sebacina spp. are saprobes or ectomycorrhiza-forming fungi. The mycorrhizal fungi of S. sikokianus were regarded to be saprobic from the environment of their habitats. 相似文献
17.
18.
Aaron S Adams Michelle S Jordan Sandye M Adams Garret Suen Lynne A Goodwin Karen W Davenport Cameron R Currie Kenneth F Raffa 《The ISME journal》2011,5(8):1323-1331
Sirex noctilio is an invasive wood-feeding wasp that threatens the world''s commercial and natural pine forests. Successful tree colonization by this insect is contingent on the decline of host defenses and the ability to utilize the woody substrate as a source of energy. We explored its potential association with bacterial symbionts that may assist in nutrient acquisition via plant biomass deconstruction using growth assays, culture-dependent and -independent analysis of bacterial frequency of association and whole-genome analysis. We identified Streptomyces and γ-Proteobacteria that were each associated with 94% and 88% of wasps, respectively. Streptomyces isolates grew on all three cellulose substrates tested and across a range of pH 5.6 to 9. On the basis of whole-genome sequencing, three Streptomyces isolates have some of the highest proportions of genes predicted to encode for carbohydrate-active enzymes (CAZyme) of sequenced Actinobacteria. γ-Proteobacteria isolates grew on a cellulose derivative and a structurally diverse substrate, ammonia fiber explosion-treated corn stover, but not on microcrystalline cellulose. Analysis of the genome of a Pantoea isolate detected genes putatively encoding for CAZymes, the majority predicted to be active on hemicellulose and more simple sugars. We propose that a consortium of microorganisms, including the described bacteria and the fungal symbiont Amylostereum areolatum, has complementary functions for degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide. 相似文献
19.
Lars Behrendt Anthony W D Larkum Erik Trampe Anders Norman S?ren J S?rensen Michael Kühl 《The ISME journal》2012,6(6):1222-1237
We assessed the microbial diversity and microenvironmental niche characteristics in the didemnid ascidian Lissoclinum patella using 16S rRNA gene sequencing, microsensor and imaging techniques. L. patella harbors three distinct microbial communities spatially separated by few millimeters of tunic tissue: (i) a biofilm on its upper surface exposed to high irradiance and O2 levels, (ii) a cloacal cavity dominated by the prochlorophyte Prochloron spp. characterized by strong depletion of visible light and a dynamic chemical microenvironment ranging from hyperoxia in light to anoxia in darkness and (iii) a biofilm covering the underside of the animal, where light is depleted of visible wavelengths and enriched in near-infrared radiation (NIR). Variable chlorophyll fluorescence imaging demonstrated photosynthetic activity, and hyperspectral imaging revealed a diversity of photopigments in all microhabitats. Amplicon sequencing revealed the dominance of cyanobacteria in all three layers. Sequences representing the chlorophyll d containing cyanobacterium Acaryochloris marina and anoxygenic phototrophs were abundant on the underside of the ascidian in shallow waters but declined in deeper waters. This depth dependency was supported by a negative correlation between A. marina abundance and collection depth, explained by the increased attenuation of NIR as a function of water depth. The combination of microenvironmental analysis and fine-scale sampling techniques used in this investigation gives valuable first insights into the distribution, abundance and diversity of bacterial communities associated with tropical ascidians. In particular, we show that microenvironments and microbial diversity can vary significantly over scales of a few millimeters in such habitats; which is information easily lost by bulk sampling. 相似文献
20.
Ricardo J Eloy Alves Wolfgang Wanek Anna Zappe Andreas Richter Mette M Svenning Christa Schleper Tim Urich 《The ISME journal》2013,7(8):1620-1631
The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. 相似文献