首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the reliability of herbivore faecal δ13C and δ15N values for reconstructing diet through review of an extensive database derived from a 3-year study of ungulates in South Africa's Kruger National Park. Faeces are a useful material for stable isotope studies of diet because they record dietary turnover at very short time scales, and because sampling is non-invasive. However, the validity of faecal isotope proxies may be questioned because they represent only undigested food remains. Results from Kruger Park confirm that free-ranging browsers have faecal δ13C consistent with C3 feeding, grazer faeces are C4, and mixed-feeder faeces intermediate. Although the respective ranges do not overlap, there is significant variation in faecal δ13C of browsers and grazers (~2.0–4.0‰) across space and through time. We demonstrate that most (~70%) of this variation can be ascribed to corresponding patterns of variation in the δ13C of C3 and C4 plants, respectively, re-enforcing the fidelity of faecal isotope proxies for diet but highlighting a need for mixing models that control for variations in plant δ13C in order to achieve accurate diet reconstructions. Predictions for the effects of climate (rainfall) and ecophysiology on 15N-abundance variations in mammals do not persist in faeces. Rather, faecal δ15N tracks changes in plant δ15N, with further fractionation occurring primarily due to variations in dietary protein (reflected by %N). Controlling for these effects, we show that a dual-isotope multiple source mixing model (Isosource) can extend diet reconstructions for African savanna herbivores beyond simplified C3/C4 distinctions, although further understanding of variations in mammal δ15N are needed for greater confidence in this approach.  相似文献   

2.
A common concern in Bayesian data analysis is that an inappropriately informative prior may unduly influence posterior inferences. In the context of Bayesian clinical trial design, well chosen priors are important to ensure that posterior-based decision rules have good frequentist properties. However, it is difficult to quantify prior information in all but the most stylized models. This issue may be addressed by quantifying the prior information in terms of a number of hypothetical patients, i.e., a prior effective sample size (ESS). Prior ESS provides a useful tool for understanding the impact of prior assumptions. For example, the prior ESS may be used to guide calibration of prior variances and other hyperprior parameters. In this paper, we discuss such prior sensitivity analyses by using a recently proposed method to compute a prior ESS. We apply this in several typical settings of Bayesian biomedical data analysis and clinical trial design. The data analyses include cross-tabulated counts, multiple correlated diagnostic tests, and ordinal outcomes using a proportional-odds model. The study designs include a phase I trial with late-onset toxicities, a phase II trial that monitors event times, and a phase I/II trial with dose-finding based on efficacy and toxicity.  相似文献   

3.
The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions.  相似文献   

4.
Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size–related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore), Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C′ values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.  相似文献   

5.
We evaluated the effects of ecosystem composition and structure (species richness and diversity, cover and spatial attributes of vegetation), abiotic factors (climate and topographical features) and the condition of the bare-ground areas (evaluated using soil-surface indicators) on the performance of Stipa tenacissima [evaluated using foliar 13C, 15N, nitrogen concentration and the carbon-to-nitrogen (C:N) ratio] in 15 steppes of SE Spain. Foliar 13C values of S. tenacissima showed a low degree of variation in the studied steppes, with average values ranging from –24.1 to –22.9. Higher variation was found in the 15N values, which ranged from –5.5 to –2.4. The nitrogen concentration and the C:N ratio varied between 5.0 and 8.0 mg g–1, and between 55.4 and 85.3, respectively. The 13C values became less negative with increasing spatial aggregation of perennial vegetation, while the C:N values increased with increasing perennial vegetation cover. The 15N values became more negative with increasing infiltration in the bare-ground areas, but the nitrogen concentration was not related to any of the environmental variables measured. Our results suggest that the relative importance of ecosystem structure and soil-surface conditions in the bare ground areas was higher than that of abiotic factors as determinants of the performance of S. tenacissima. The results also show that even subtle changes in these ecosystem features may lead to modifications in plant performance in semiarid S. tenacissima steppes, and thus to modifications in the associated ecosystem functions in the mid- to long-term.  相似文献   

6.
Stable nitrogen (δ15N) and carbon (δ13C) isotope ratios from muscle, liver and yolk were analysed from the mother and embryos of an ovoviviparous shark, Hexanchus griseus. Embryonic liver and muscle had similar δ15N and δ13C ratios or were depleted in heavy isotopes, compared to the same maternal somatic and reproductive yolk tissues, but no relationship existed between δ15N or δ13C and embryo length, as expected, because a switch to placental nourishment is lacking in this species. This study expands the understanding of maternal nourishment and embryonic stable isotope differences in ovoviviparous sharks.  相似文献   

7.
Synopsis Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition, ANCOVA results suggest trophic position of fishes was dependent on channel type (primary vs. secondary), as there was less variability in resource use in secondary channels. These data provided a spatial framework of trophic interactions that can be used to predict the outcome of management actions. Overall, we confirmed high overlap in resource used between native and non-native fishes. However, spatial variation in trophic interactions both longitudinally and laterally in the river present a challenge to resource managers attempting to managing entire river systems.  相似文献   

8.
Reviews in Fish Biology and Fisheries - Stable isotope analysis (SIA) is widely used to assess animal diet and movements, requiring accurate estimates of trophic discrimination factors (TDFs)....  相似文献   

9.
10.
Knowledge of carnivore diets is essential to understand how carnivore populations respond demographically to variations in prey abundance. Analysis of stable isotopes is a useful complement to traditional methods of analyzing carnivore diets. We used data on δ^13C and δ^15N in wolverine tissues to investigate patterns of seasonal and annual diet variation in a wolverine Gulo gulo population in the western Brooks Range, Alaska, USA. The stable isotope ratios in wolverine tissues generally reflected that of terrestrial carnivores, corroborating previous diet studies on wolverines. We also found variation in δ^13C and δ^15N both between muscle samples collected over several years and between tissues with different assimilation rates, even after correcting for isotopic fractionation. This suggests both annual and seasonal diet variation. Our results indicate that data on δ^13C and δ^15N holds promise for qualitative assessments of wolverine diet changes over time. Such temporal variation may be important indicators of ecological responses to environmental perturbations, and we suggest that more refined studies of stable isotopes may be an important tool when studying temporal change in diets of wolverines and similar carnivores [ Current Zoology 55 (3): 188- 192, 2009].  相似文献   

11.
Sea lion and seal populations in Alaskan waters underwent various degrees of decline during the latter half of the twentieth century and the cause(s) for the declines remain uncertain. The stable carbon (13C/12C) and nitrogen (15N/14N) isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the Bering Sea and Gulf of Alaska were measured for the period 1951-1997 to test the hypothesis that a change in trophic level may have occurred during this interval and contributed to the population declines. A significant change in '15N in pinniped tissues over time would imply a marked change in trophic level. No significant change in bone collagen '15N was found for any of the three species during the past 47 years in either the Bering Sea or the Gulf of Alaska. However, the 15N in the Steller sea lion collagen was significantly higher than both northern fur seals and harbor seals. A significant decline in '13C (almost 2 ‰ over the 47 years) was evident in Steller sea lions, while a declining trend, though not significant, was evident in harbor seals and northern fur seals. Changes in foraging location, in combination with a trophic shift, may offer one possible explanation. Nevertheless, a decrease in '13C over time with no accompanying change in '15N suggests an environmental change affecting the base of the foodweb rather than a trophic level change due to prey switching. A decline in the seasonal primary production in the region, possibly resulting from decreased phytoplankton growth rates, would exhibit itself as a decline in '13C. Declining production could be an indication of a reduced carrying capacity in the North Pacific Ocean. Sufficient quantities of optimal prey species may have fallen below threshold sustaining densities for these pinnipeds, particularly for yearlings and subadults who have not yet developed adequate foraging skills.  相似文献   

12.
Regional food web studies that fail to account for small-scale isotopic variability can lead to a mismatch between an organism’s inferred and true trophic position. Misinterpretation of trophic status may result, substantially limiting spatial and temporal comparability of food web studies. We sampled several carbon sources and consumers in a nested design to assess the variability of food web members across small spatial scales (100 s of m to several km) in regions around the Windmill Islands and Vestfold Hills in East Antarctica. For carbon sources, δ13C in sea ice POM was particularly variable between locations (km apart) and between sites (100 s of m apart) with replicate samples varying by up to 16‰. Macroalgae δ13C was less variable (replicate samples ranging up to 6.9‰ for the red alga Iridaea cordata), yet still differed between locations. Sediment POM and pelagic POM were the least variable, displaying minimal differences between locations or sites for δ13C and δ15N. Three out of eight consumers were significantly different between locations for δ13C, and five out of eight for δ15N, with the fish Trematomus bernacchii the most variable for both δ13C and δ15N. At smaller scales, the amphipod Paramorea walkeri showed significant variation between sites in δ13C but not in δ15N. We attribute small-scale variability to the dynamic physical environment for carbon sources in coastal systems and a close coupling of diet to habitat for consumers. We highlight the need to account for small-scale spatial variation in sampling designs for regional food web studies.  相似文献   

13.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

14.
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon: nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰,whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C: N ratio ranged between 10.7 and 53.5,and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting.  相似文献   

15.
Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.  相似文献   

16.
Stable isotope analyses are often used to calculate relative contributions of multiple food sources in an animals diet. One prerequisite for a precise calculation is the determination of the diet-tissue fractionation factor. Isotopic ratios in animals are not only affected by the composition of the diet, but also by the amount of food consumed. Previous findings regarding the latter point are controversial. As stable isotope analyses have often been used to investigate aquatic food webs, an experiment with carp (Cyprinus carpio L.) was carried out to test the influence of the feeding level and individual metabolic rate on 13C and 15N values of the whole body. After an initial phase, 49 carp were assigned randomly to four groups and fed the same diet at different levels for 8 weeks. For 15 fish, the energy budget was determined by indirect calorimetry. Feed and individual fish were analysed for their proximate composition, gross energy content and 13C and 15N values. 13C and 15N values differed significantly at different feeding levels. While 13C values of the lipids and 15N values decreased with increasing feeding rate, 13C values of the lipid-free matter showed a non-linear pattern. Data obtained from fish held in the respirometric system revealed a relationship between 13C values and the percentage retention of metabolizable energy. Our results show that reconstructing the diets of fish from the isotopic ratios when the feeding level and individual metabolic rates are unknown would introduce an error into the data used for back-calculation of up to 1 for both 13C and 15N values and may have substantial effects on the results of calculated diets. As other workers have pointed out, the development and application of stable isotopes to nutritional ecology studies is a field in its infancy and gives rise to erroneous, misleading results without nutritional, physiological and ecological knowledge.  相似文献   

17.
Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13C and δ15N values (i.e., result in artificially lower δ13C and δ15N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific “C:N thresholds” provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13C values were observed for known regional movements of DUS and RAG (δ13CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13C and δ15N values to examine elasmobranch ecology.  相似文献   

18.
Matsushima  Miwa  Choi  Woo-Jung  Chang  Scott X. 《Plant and Soil》2012,359(1-2):375-385
Background and Aims

Phosphorus (P) mineralisation from crop residues is usually predicted from total P or carbon: phosphorus (C: P) ratios. However, these measures have limited accuracy as they do not take into account the presence of different P species that may be mineralised at different rates. In this study P speciation was determined using solution 31P nuclear magnetic resonance (NMR) spectroscopy to understand the potential fate of residue P in soils.

Methods

Mature above-ground biomass of eight different crops sampled from the field was portioned into stem, chaff and seed.

Results

The main forms of P detected in stem and chaff were orthophosphate (25–75 %), phospholipids (10–40 %) and RNA (5–30 %). Phytate was the dominant P species in seeds, and constituted up to 45 % of total P in chaff but was only detected in minor amounts (<1 %) in stem residue. The majority (65–95 %) of P in stems was water-extractable, and most of this was detected as orthophosphate. However, this includes organic P that may have been hydrolysed during the water extraction.

Conclusions

This study indicates that the majority of residue P in aboveground plant residues has the potential to be delivered to soil in a form readily available to plants and soil microorganisms.

  相似文献   

19.
Organic carbon and nitrogen isotope values (δ13C, δ15N) and C/N ratios of six sediment cores from six coastal lagoons (including the Oder Estuary) were measured to chart the coastal development and to reconstruct the local palaeoenvironments of the southern Baltic Sea region during the Holocene. In addition, δ13C, δ15N and C/N values of major organic matter sources in the coastal lagoons and their drainage areas are investigated to determine the origin of organic matter (i.e. terrigenous or marine) in the sediments: plankton, aquatic macrophytes, typical C3 shore plants and peat. The δ13C, δ15N and C/N values of the samples collected show the clearly identifiable stages in the development of the water bodies: post-glacial lake stages with sandy sedimentation, lacustrine phases with high autochthonous productivity, terrestrial stages with peat formation, sedimentation as a result of marine transgression, and brackish sedimentation after the formation of sand spits and barrier islands. These stages are the results of sea level changes in the region. The values allow derivation of differences in the palaeoenvironments of the lagoons in the study area. A distinct terrestrial input is evident in the sediments of the lagoonal Oder Estuary, which can be attributed to the direct inflow of the Oder River into the lagoon. The isotope and C/N values also suggest a contribution of C4 plant detritus for the water bodies in the northeastern part of the study area (Barther Bodden, Grabow). The burial of autochthonous organic matter (i.e. plankton, aquatic macrophytes) in the sediment could be derived for all lagoons in this investigation.  相似文献   

20.
Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号