共查询到20条相似文献,搜索用时 0 毫秒
1.
Greenhouse and laboratory experiments were performed to determine if an interaction exists between Meloidogyne incognita and Hoplolaimus columbus on Davis soybean. Greenhouse tests were performed with three population levels of M. incognita and H. columbus (0, 1,500, 6,000/1.5-liter pot) separately and in all combinations. Dry root weight (DRT) declined nonlinearly and dry shoot weight (DST) declined linearly with respect to increasing initial populations of M. incognita and H. columbus. When the two nematode species were added to the soil together, the amount of DRT and DST suppression by one species was dependent on the initial level of the concomitant species. The final root population of M. incognita or H. columbus declined linearly with increasing initial population density of the concomitant species. H. columbus suppressed M. incognita populations in the soil nonlinearly, but M. incognita had no effect on H. columbus. 相似文献
2.
Diana Tamayo Orville Hernández Cesar Mu?oz-Cadavid Luz Elena Cano Angel González 《Memórias do Instituto Oswaldo Cruz》2013,108(4):488-493
The infectious process starts with an initial contact between pathogenand host. We have previously demonstrated that Paracoccidioidesbrasiliensis conidia interact with plasma proteins includingfibrinogen, which is considered the major component of the coagulation system.In this study, we evaluated the in vitro capacity of P.brasiliensis conidia to aggregate with plasma proteins andcompounds involved in the coagulation system. We assessed the aggregation ofP. brasiliensis conidia after incubation with human serumor plasma in the presence or absence of anticoagulants, extracellular matrix(ECM) proteins, metabolic and protein inhibitors, monosaccharides and othercompounds. Additionally, prothrombin and partial thromboplastin times weredetermined after the interaction of P. brasiliensis conidiawith human plasma. ECM proteins, monosaccharides and human plasma significantlyinduced P. brasiliensis conidial aggregation; however,anticoagulants and metabolic and protein inhibitors diminished the aggregationprocess. The extrinsic coagulation pathway was not affected by the interactionbetween P. brasiliensis conidia and plasma proteins, while theintrinsic pathway was markedly altered. These results indicate that P.brasiliensis conidia interact with proteins involved in thecoagulation system. This interaction may play an important role in the initialinflammatory response, as well as fungal disease progression caused byP. brasiliensis dissemination. 相似文献
3.
Subbareddy Maddika Shirley M.-H. Sy Junjie Chen 《The Journal of biological chemistry》2009,284(19):12998-13003
Proper activation of checkpoint during mitotic stress is an important
mechanism to prevent genomic instability. Chfr (Check point protein
with FHA (Forkhead-associated domain) and RING domains)
is a ubiquitin-protein isopeptide ligase (E3) that is important for the
control of an early mitotic checkpoint, which delays entry into metaphase in
response to mitotic stress. Because several lines of evidence indicate that
Chfr is a potential tumor suppressor, it is critically important for us to
identify Chfr substrates and understand how Chfr may regulate these
substrates, control mitotic transitions, and thus, act as a tumor suppressor
in vivo. Here, we report the discovery of a new Chfr-associated
protein Kif22, a chromokinesin that binds to both DNA and microtubules. We
demonstrated that Kif22 is a novel substrate of Chfr. We showed that
Chfr-mediated Kif22 down-regulation is critical for the maintenance of
chromosome stability. Collectively, our results reveal a new substrate of Chfr
that plays a role in the maintenance of genome integrity.Chfr (Check point protein with FHA and
RING domains) is an early mitotic checkpoint protein that delays
entry into metaphase in response to mitotic stress
(1,
2). The checkpoint function of
Chfr requires both of its
FHA3 and RING domains.
The exact role of FHA domain in Chfr function is largely unknown. Chfr via its
RING domain transfers both lysine 48-linked and lysine 63-linked polyubiquitin
chains to its target proteins, which either promotes the degradation of target
proteins or alters their function
(3,
4). Recently, a PAR-binding
zinc finger motif, which binds directly to polyADP-ribosylated substrates
catalyzed by PARP1, was identified at the C-terminal region of Chfr
(5). This PAR-binding zinc
finger motif was reported to be required for Chfr function in antephase
checkpoint (2,
5).Chfr delays the cell cycle progression at mitosis by inactivating cyclin
B1-bound Cdc2 and then exporting them from nucleus
(6). Further, mechanistic
studies have suggested that the inactivation of Cdc2 may be due to a negative
regulation of Plk1 by Chfr (3).
Polyubiquitination of Plk1 by Chfr negatively regulates the Plk1 protein
levels, which delay the inactivation of Cdc2 inhibitory Wee1 kinase and the
activation of Cdc25 phosphatase and thus maintain Cdc2 at its inactive
state.Several lines of evidence indicate that Chfr is a potential tumor
suppressor. Loss or down-regulation of Chfr has been reported in several types
of cancers including primary breast, lung, esophagus, colon, and gastric
carcinomas (1,
7,
8). To investigate directly
whether Chfr loss contributes to tumorigenesis, our laboratory has generated
Chfr knock-out mice, which were cancer-prone and developed spontaneous tumors
(9). The increased tumor
incidence in Chfr null mice is likely due to a failure in maintaining
chromosomal stability, which occurs at least partially due to the
overexpression of a key mitotic kinase Aurora A
(9). Chfr physically interacts
with Aurora A and promotes its ubiquitination and degradation; thus, higher
protein levels of Aurora A in Chfr null mice may contribute to chromosomal
instability and eventually tumorigenesis. Therefore, our current hypothesis is
that Chfr may regulate the stability of several of its substrates including
Aurora A, and thus, control mitotic progression and prevent chromosomal
instability. In this study, we reported the identification of another Chfr
substrate as chromokinesin protein Kif22 and revealed that Kif22
overexpression also contributes to chromosomal instability observed in
Chfr-deficient cells. 相似文献
4.
5.
Spencer D.; James E.K.; Ellis G.J.; Shaw J.E.; Sprent J.I. 《Journal of experimental botany》1994,45(10):1475-1482
Several cultivars of Solanum tuberosum L., the potato, weregrown on tissue culture media and their roots inoculated withstrains of rhizobia known to infect legumes at root junctionsor between epidermal cells. Infection incidence and severityshowed considerable cultivar/bacterial strain interaction. Bacteriaspread through intercellular spaces and invaded cells in a non-structuredway: some infections penetrated to the root xylem. There wasno evidence that potato root cells produced nod-inducing factorsand nitrogenase activity was not detected. In some host/rhizobialcombinations outgrowths were formed on roots. These varied fromloose infected callus tissue at the junctions of lateral roots,to modified lateral roots of limited growth which showed somecolonization by rhizobia. Key words: Solarium tuberosum L, potato, glycoprotein, immunogold labelling, rhizobia, flavonoids 相似文献
6.
David S. Garbe Yanshan Fang Xiangzhong Zheng Mallory Sowcik Rana Anjum Steven P. Gygi Amita Sehgal 《PLoS genetics》2013,9(9)
Circadian rhythms in Drosophila rely on cyclic regulation of the period (per) and timeless (tim) clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A) and Protein Phosphatase-1 (PP1). Here, we used mass spectrometry to identify 35 “phospho-occupied” serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A. We found that cell culture assays were not good predictors of protein function in flies and so we generated per transgenes carrying phosphorylation site mutations and tested for rescue of the per01 arrhythmic phenotype. Surprisingly, most transgenes restore wild type rhythms despite carrying mutations in several phosphorylation sites. One particular transgene, in which T610 and S613 are mutated to alanine, restores daily rhythmicity, but dramatically lengthens the period to ∼30 hrs. Interestingly, the single S613A mutation extends the period by 2–3 hours, while the single T610A mutation has a minimal effect, suggesting these phospho-residues cooperate to control period length. Conservation of S613 from flies to humans suggests that it possesses a critical clock function, and mutational analysis of residues surrounding T610/S613 implicates the entire region in determining circadian period. Biochemical and immunohistochemical data indicate defects in overall phosphorylation and altered timely degradation of PER carrying the double or single S613A mutation(s). The PER-T610A/S613A mutant also alters CLK phosphorylation and CLK-mediated output. Lastly, we show that a mutation at a previously identified site, S596, is largely epistatic to S613A, suggesting that S613 negatively regulates phosphorylation at S596. Together these data establish functional significance for a new domain of PER, demonstrate that cooperativity between phosphorylation sites maintains PER function, and support a model in which specific phosphorylated regions regulate others to control circadian period. 相似文献
7.
Francesco Baldini Paolo Gabrieli Adam South Clarissa Valim Francesca Mancini Flaminia Catteruccia 《PLoS biology》2013,11(10)
Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria. 相似文献
8.
Chiara Andreoni Gianni Orsi Carmelo De Maria Francesca Montemurro Giovanni Vozzi 《PloS one》2014,9(12)
The biochemistry of a system made up of three kinds of cell is virtually impossible to work out without the use of in silico models. Here, we deal with homeostatic balance phenomena from a metabolic point of view and we present a new computational model merging three single-cell models, already available from our research group: the first model reproduced the metabolic behaviour of a hepatocyte, the second one represented an endothelial cell, and the third one described an adipocyte. Multiple interconnections were created among these three models in order to mimic the main physiological interactions that are known for the examined cell phenotypes. The ultimate aim was to recreate the accomplishment of the homeostatic balance as it was observed for an in vitro connected three-culture system concerning glucose and lipid metabolism in the presence of the medium flow. The whole model was based on a modular approach and on a set of nonlinear differential equations implemented in Simulink, applying Michaelis-Menten kinetic laws and some energy balance considerations to the studied metabolic pathways. Our in silico model was then validated against experimental datasets coming from literature about the cited in vitro model. The agreement between simulated and experimental results was good and the behaviour of the connected culture system was reproduced through an adequate parameter evaluation. The developed model may help other researchers to investigate further about integrated metabolism and the regulation mechanisms underlying the physiological homeostasis. 相似文献
9.
10.
Elizabeth A. Roth-Johnson Christina L. Vizcarra Justin S. Bois Margot E. Quinlan 《The Journal of biological chemistry》2014,289(7):4395-4404
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte. 相似文献
11.
J. Feitelson 《Biophysical journal》1967,7(6):727-734
A molecular model of hemoglobin was constructed which made it possible to visualize the relation between various amino acid residues in the molecule. The model indicates that electrostatic forces might play a significant role in holding the subunits of hemoglobin together. This would explain why myoglobin does not form a tetramer while four β-chains, which are structurally similar to myoglobin, do assemble into a hemoglobin H molecule. Also, as far as the primary structures of hemoglobin chains of various species are known, the proposed ionic links between subunits are consistent with the fact that mammalian hemoglobins form stable tetramers while the peptide chains of lamprey hemoglobin are only weakly associated. The different behavior of hemoglobin H and of normal hemoglobin upon oxygen uptake is briefly discussed in terms of allosteric effects. 相似文献
12.
13.
John W. Hardin Francis E. Reyes Robert T. Batey 《The Journal of biological chemistry》2009,284(22):15317-15324
In archaea and eukarya, box C/D ribonucleoprotein (RNP) complexes are
responsible for 2′-O-methylation of tRNAs and rRNAs. The
archaeal box C/D small RNP complex requires a small RNA component (sRNA)
possessing Watson-Crick complementarity to the target RNA along with three
proteins: L7Ae, Nop5p, and fibrillarin. Transfer of a methyl group from
S-adenosylmethionine to the target RNA is performed by fibrillarin,
which by itself has no affinity for the sRNA-target duplex. Instead, it is
targeted to the site of methylation through association with Nop5p, which in
turn binds to the L7Ae-sRNA complex. To understand how Nop5p serves as a
bridge between the targeting and catalytic functions of the box C/D small RNP
complex, we have employed alanine scanning to evaluate the interaction between
the Pyrococcus horikoshii Nop5p domain and an L7Ae box C/D RNA
complex. From these data, we were able to construct an isolated RNA-binding
domain (Nop-RBD) that folds correctly as demonstrated by x-ray crystallography
and binds to the L7Ae box C/D RNA complex with near wild type affinity. These
data demonstrate that the Nop-RBD is an autonomously folding and functional
module important for protein assembly in a number of complexes centered on the
L7Ae-kinkturn RNP.Many biological RNAs require extensive modification to attain full
functionality in the cell (1).
Currently there are over 100 known RNA modification types ranging from small
functional group substitutions to the addition of large multi-cyclic ring
structures (2). Transfer RNA,
one of many functional RNAs targeted for modification
(3-6),
possesses the greatest modification type diversity, many of which are
important for proper biological function
(7). Ribosomal RNA, on the
other hand, contains predominantly two types of modified nucleotides:
pseudouridine and 2′-O-methylribose
(8). The crystal structures of
the ribosome suggest that these modifications are important for proper folding
(9,
10) and structural
stabilization (11) in
vivo as evidenced by their strong tendency to localize to regions
associated with function (8,
12,
13). These roles have been
verified biochemically in a number of cases
(14), whereas newly emerging
functional modifications are continually being investigated.Box C/D ribonucleoprotein
(RNP)3 complexes serve
as RNA-guided site-specific 2′-O-methyltransferases in both
archaea and eukaryotes (15,
16) where they are referred to
as small RNP complexes and small nucleolar RNPs, respectively. Target RNA
pairs with the sRNA guide sequence and is methylated at the 2′-hydroxyl
group of the nucleotide five bases upstream of either the D or D′ box
motif of the sRNA (Fig. 1,
star) (17,
18). In archaea, the internal
C′ and D′ motifs generally conform to a box C/D consensus sequence
(19), and each sRNA contains
two guide regions ∼12 nucleotides in length
(20). The bipartite
architecture of the RNP potentially enables the complex to methylate two
distinct RNA targets (21) and
has been shown to be essential for site-specific methylation
(22).Open in a separate windowFIGURE 1.Organization of the archaeal box C/D complex. The protein components
of this RNP are L7Ae, Nop5p, and fibrillarin, which together bind a box C/D
sRNA. The regions of the Box C/D sRNA corresponding to the conserved C, D,
C′, and D′ boxes are labeled. The target RNA binds the sRNA
through Watson-Crick pairing and is methylated by fibrillarin at the fifth
nucleotide from the D/D′ boxes (star).In addition to the sRNA, the archaeal box C/D complex requires three
proteins for activity (23):
the ribosomal protein L7Ae
(24,
25), fibrillarin, and the
Nop56/Nop58 homolog Nop5p (Fig.
1). L7Ae binds to both box C/D and the C′/D′ motifs
(26), which respectively
comprise kink-turn (27) or
k-loop structures (28), to
initiate the assembly of the RNP
(29,
30). Fibrillarin performs the
methyl group transfer from the cofactor S-adenosylmethionine to the
target RNA
(31-33).
For this to occur, the active site of fibrillarin must be positioned precisely
over the specific 2′-hydroxyl group to be methylated. Although
fibrillarin methylates this functional group in the context of a Watson-Crick
base-paired helix (guide/target), it has little to no binding affinity for
double-stranded RNA or for the L7Ae-sRNA complex
(22,
26,
33,
34). Nop5p serves as an
intermediary protein bringing fibrillarin to the complex through its
association with both the L7Ae-sRNA complex and fibrillarin
(22). Along with its role as
an intermediary between fibrillarin and the L7Ae-sRNA complex, Nop5p possesses
other functions not yet fully understood. For example, Nop5p self-dimerizes
through a coiled-coil domain
(35) that in most archaea and
eukaryotic homologs includes a small insertion sequence of unknown function
(36,
37). However, dimerization and
fibrillarin binding have been shown to be mutually exclusive in
Methanocaldococcus jannaschii Nop5p, potentially because of the
presence of this insertion sequence
(36). Thus, whether Nop5p is a
monomer or a dimer in the active RNP is still under debate.In this study, we focus our attention on the Nop5p protein to investigate
its interaction with a L7Ae box C/D RNA complex because both the
fibrillarin-Nop5p and the L7Ae box C/D RNA interfaces are known from crystal
structures (29,
35,
38). Individual residues on
the surface of a monomeric form of Nop5p (referred to as mNop5p)
(22) were mutated to alanine,
and the effect on binding affinity for a L7Ae box C/D motif RNA complex was
assessed through the use of electrophoretic mobility shift assays. These data
reveal that residues important for binding cluster within the highly conserved
NOP domain (39,
40). To demonstrate that this
domain is solely responsible for the affinity of Nop5p for the preassembled
L7Ae box C/D RNA complex, we expressed and purified it in isolation from the
full Nop5p protein. The isolated Nop-RBD domain binds to the L7Ae box C/D RNA
complex with nearly wild type affinity, demonstrating that the Nop-RBD is
truly an autonomously folding and functional module. Comparison of our data
with the crystal structure of the homologous spliceosomal hPrp31-15.5K
protein-U4 snRNA complex (41)
suggests the adoption of a similar mode of binding, further supporting a
crucial role for the NOP domain in RNP complex assembly. 相似文献
14.
In the post-genome era, insufficient functional annotation of predicted genes
greatly restricts the potential of mining genome data. We demonstrate that an
evolutionary approach, which is independent of functional annotation, has great
potential as a tool for genome analysis. We chose the genome of a model
filamentous fungus Neurospora crassa as an example.
Phylogenetic distribution of each predicted protein coding gene (PCG) in the
N. crassa genome was used to classify genes into six
mutually exclusive lineage specificity (LS) groups, i.e.
Eukaryote/Prokaryote-core, Dikarya-core, Ascomycota-core,
Pezizomycotina-specific, N. crassa-orphans and Others.
Functional category analysis revealed that only ∼23% of PCGs
in the two most highly lineage-specific grouping, Pezizomycotina-specific and
N. crassa-orphans, have functional annotation. In contrast,
∼76% of PCGs in the remaining four LS groups have functional
annotation. Analysis of chromosomal localization of N.
crassa-orphan PCGs and genes encoding for secreted proteins showed
enrichment in subtelomeric regions. The origin of N.
crassa-orphans is not known. We found that 11% of N.
crassa-orphans have paralogous N. crassa-orphan
genes. Of the paralogous N. crassa-orphan gene pairs,
33% were tandemly located in the genome, implying a duplication
origin of N. crassa-orphan PCGs in the past. LS grouping is
thus a useful tool to explore and understand genome organization, evolution and
gene function in fungi. 相似文献
15.
Liliana O. Rocha Sabina Moser. Tralamazza Gabriela M. Reis Leon Rabinovitch Cynara B. Barbosa Benedito Corrêa 《PloS one》2014,9(4)
Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscopy, flow cytometry, indirect immunofluorescence, and high performance liquid chromatography to determine the interaction between B. thuringiensis subsp. kurstaki LFB-FIOCRUZ (CCGB) 257 and F. verticillioides MRC 826, an important plant pathogen frequently associated with maize. B. thuringiensis showed a strong in vitro suppressive effect on F. verticillioides growth and inhibited fumonisin production. Flow cytometry analysis was found to be adequate for characterizing the fungal cell oscillations and death during these interactions. Further studies of the antagonistic effect of this isolate against other fungi and in vivo testing are necessary to determine the efficacy of B. thuringiensis subsp. kurstaki in controlling plant pathogens. This is the first report on the use of flow cytometry for quantifying living and apoptotic F. verticillioides cells and the B. thuringiensis Cry 1Ab toxin. 相似文献
16.
Daniel Feliciano Jarred J. Bultema Andrea L. Ambrosio Santiago M. Di Pietro 《Journal of visualized experiments : JoVE》2011,(47)
A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes1-6. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits7,8. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins9. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery9.Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes9. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain9. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery9. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box9. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E]10 but variants have been subsequently discovered11. The W-box conforms to the sequence PWxxW (where x is any residue).Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells12. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal13,14. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor15. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies16. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.Download video file.(108M, mov) 相似文献
17.
Jun Ren Feng Dong Guo-Jun Cai Peng Zhao Jennifer M. Nunn Loren E. Wold Jianming Pei 《PloS one》2010,5(4)
Objectives
This study was designed to evaluate the interaction between aging and obesity on cardiac contractile and intracellular Ca2+ properties.Methods
Cardiomyocytes from young (4-mo) and aging (12- and 18-mo) male lean and the leptin deficient ob/ob obese mice were treated with leptin (0.5, 1.0 and 50 nM) for 4 hrs in vitro. High fat diet (45% calorie from fat) and the leptin receptor mutant db/db obesity models at young and older age were used for comparison. Cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ levels and decay. O2 − levels were measured by dihydroethidium fluorescence.Results
Our results revealed reduced survival in ob/ob mice. Aging and obesity reduced PS, ± dL/dt, intracellular Ca2+ rise, prolonged TR90 and intracellular Ca2+ decay, enhanced O2 − production and p 47phox expression without an additive effect of the two, with the exception of intracellular Ca2+ rise. Western blot analysis exhibited reduced Ob-R expression and STAT-3 phosphorylation in both young and aging ob/ob mice, which was restored by leptin. Aging and obesity reduced phosphorylation of Akt, eNOS and p38 while promoting pJNK and pIκB. Low levels of leptin reconciled contractile, intracellular Ca2+ and cell signaling defects as well as O2 − production and p 47phox upregulation in young but not aging ob/ob mice. High level of leptin (50 nM) compromised contractile and intracellular Ca2+ response as well as O2 − production and stress signaling in all groups. High fat diet-induced and db/db obesity displayed somewhat comparable aging-induced mechanical but not leptin response.Conclusions
Taken together, our data suggest that aging and obesity compromise cardiac contractile function possibly via phosphorylation of Akt, eNOS and stress signaling-associated O2 − release. 相似文献18.
The evolution of increased competitive ability (EICA) hypothesis predicts that escape from intense herbivore damage may enable invasive plants to evolve higher competitive ability in the invasive range. Below-ground root herbivory can have a strong impact on plant performance, and invasive plants often compete with multiple species simultaneously, but experimental approaches in which EICA predictions are tested with root herbivores and in a community setting are rare. Here, we used Brassica nigra plants from eight invasive- and seven native-range populations to test whether the invasive-range plants have evolved increased competitive ability when competing with Achillea millefolium and with a community (both with and without A. millefolium). Further, we tested whether competitive interactions depend on root herbivory on B. nigra by the specialist Delia radicum. Without the community, competition with A. millefolium reduced biomass of invasive- but not of native-range B. nigra. With the community, invasive-range B. nigra suffered less than native-range B. nigra. Although the overall effect of root herbivory was not significant, it reduced the negative effect of the presence of the community. The community produced significantly less biomass when competing with B. nigra, irrespective of the range of origin, and independent of the presence of A. millefolium. Taken together, these results offer no clear support for the EICA hypothesis. While native-range B. nigra plants appear to be better in dealing with a single competitor, the invasive-range plants appear to be better in dealing with a more realistic multi-species community. Possibly, this ability of tolerating multiple competitors simultaneously has contributed to the invasion success of B. nigra in North America. 相似文献
19.
20.
Interaction of Cryptochrome 1, Phytochrome, and Ion Fluxes in
Blue-Light-Induced Shrinking of Arabidopsis
Hypocotyl
Protoplasts 总被引:5,自引:1,他引:5
下载免费PDF全文

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B. 相似文献