首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality.  相似文献   

2.
Lactic acid bacteria (LAB) were isolated from the intestinal tract of the wild clam Meretrix lamarckii caught from the coastal waters of Kashima, Ibaraki, Japan. As many as 415 isolates were obtained using the culture method, of which 70 were considered presumptive LAB strains based on phenotypic tests. Phylogenetic analysis of these presumptive isolates of LAB based on the sequence of the 16S rRNA gene demonstrated that the species belonged to several genera of Lactobacillus, Lactococcus and Pediococcus. Interestingly, however, the species composition was different between the samples in July and October 2010. Further analyses based on the fermentation profiles revealed that the LAB from the clam caught in July 2010 were identified to be Lactobacillus curvatus, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris and Pediococcus pentosaceus, whereas those in October 2010 were identified to be Lactobacillus plantarum, Lactococcus lactis subsp. lactis and P. pentosaceus. The diversity of LAB in the intestinal tract of the clam suggests that the filter feeder bivalves such as M. lamarckii are a rich repository of marine isolates of LAB.  相似文献   

3.
In the present study, a total of 80 presumed lactic acid bacteria (LAB) were isolated from camel milk. Selected LAB were identified as Lactococcus lactis (cam 12), Enterococcus lactis (cam 14) and Lactobacillus plantarum (cam 15) and their potential were tested by tolerance & de-conjugation of bile salts, antimicrobial activity, surface hydrophobicity and adhesion potential) along with this of probiotics were evaluated for curd formation and assessed for sensory properties and syneresis. Selected LABs showed antimicrobial activity against wide range of pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherchiaia. coli). LAB (cam 12, cam 14 and cam15) were highly sceptible to chloramphenicol, vancomycin, and tetracyclin. In vitro adhesion studies with Caco-2 cells demonstrated strong adhesion activity with hydrophobicity (99%) was observed. Acute oral toxicity of E. lactis and L. plantarum showed non-toxic, non-virulent and safe for industrial application. The study provides potential LAB which may act as a substitute of functional food, synthetic feed and industrial curd formulation with in the shortest span (240 min at 28–32 °C).  相似文献   

4.
A total of 54 lactic acid bacteria (LAB) were isolated from stored wheat samples sourced from grain silos in North Tunisia. Fifteen representative isolates were identified by 16S rDNA sequencing as Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus graminis, Lactobacillus coryniformis and Weissella cibaria. These isolates were screened for antifungal activity in dual culture agar plate assay against eight post-harvest moulds (Penicillium expansum, Penicillium chrysogenum, Penicillium glabrum, Aspergillus flavus, Aspergillus niger, Aspergillus carbonarius, Fusarium graminearum and Alternaria alternata). All LAB showed inhibitory activity against moulds, especially strains of L. plantarum which exhibited a large antifungal spectrum. Moreover, LAB species such as L. plantarum LabN10, L. graminis LabN11 and P. pentosaceus LabN12 showed high inhibitory effects against the ochratoxigenic strain A. carbonarius ANC89. These LAB were also investigated for their ability to reduce A. carbonarius ANC89 biomass and its ochratoxin A (OTA) production on liquid medium at 28 and 37 °C and varied pH conditions. The results indicated that factors such as temperature, pH and bacterial biomass on mixed cultures, has a significant effect on fungal inhibition and OTA production. High percentage of OTA reduction was obtained by L. plantarum and L. graminis (>97%) followed by P. pentosaceus (>81.5%). These findings suggest that in addition to L. plantarum, L. graminis and P. pentosaceus strains may be exploited as a potential OTA detoxifying agent to protect humans and animals health against this toxic metabolite.  相似文献   

5.
The diversity of populations of yeast and lactic acid bacteria (LAB) in pig feeds fermented at 10, 15, or 20°C was characterized by rRNA gene sequencing of isolates. The feeds consisted of a cereal grain mix blended with wet wheat distillers' grains (WWDG feed), whey (W feed), or tap water (WAT feed). Fermentation proceeded for 5 days without disturbance, followed by 14 days of daily simulated feed outtakes, in which 80% of the contents were replaced with fresh feed mixtures. In WWDG feed, Pichia galeiformis became the dominant yeast species, independent of the fermentation temperature and feed change. The LAB population was dominated by Pediococcus pentosaceus at the start of the fermentation period. After 3 days, the Lactobacillus plantarum population started to increase in feeds at all temperatures. The diversity of LAB increased after the addition of fresh feed components. In W feed, Kluyveromyces marxianus dominated, but after the feed change, the population diversity increased. With increasing fermentation temperatures, there was a shift toward Pichia membranifaciens as the dominant species. L. plantarum was the most prevalent LAB in W feed. The WAT feed had a diverse microbial flora, and the yeast population changed throughout the whole fermentation period. Pichia anomala was the most prevalent yeast species, with increasing occurrence at higher fermentation temperatures. Pediococcus pentosaceus was the most prevalent LAB, but after the feed change, L. plantarum started to proliferate. The present study demonstrates that the species composition in fermented pig feed may vary considerably, even if viable cell counts indicate stable microbial populations.  相似文献   

6.
The aim of this study was to evaluate the probiotic potential of lactic acid bacteria (LAB) strains isolated from Horreh. Some probiotic properties, e.g., resistance to acid, bile tolerance, antibacterial activity, and antibiotic susceptibility, were investigated. A total of 140 Gram-positive and catalase-negative isolates from Horreh were subjected to identification and grouping by cultural methods and the 16S rRNA sequencing. The new isolates were identified to be Lactobacillus (fermentum, plantarum, and brevis) Weissella cibaria, Enterococcus (faecium and faecalis), Leuconostoc (citreum and mesenteroides subsp. mesenteroides) and Pediococcus pentosaceus. Probiotic potential study of LAB isolates showed that Lb. plantarum and Leu. mesenteroides subsp. mesenteroides isolates were able to grow at pH 2.5 and 3.5. Lactobacillus plantarum (isolate A44) showed the highest cell hydrophobicity (84.5%). According to antibacterial activity tests, Listeria innocua and Staphylococcus aureus were the most sensitive indicators against the selected LAB strains, while Escherichia coli and Bacillus cereus were the most resistant. In addition, all the isolated LAB species were resistant to vancomycin. The results of the present study suggested that the Lactobacillus fermentum and plantarum isolated from Horreh, characterized in this study, have potential use for industrial purposes as probiotics.  相似文献   

7.
Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.  相似文献   

8.
Real-time polymerase chain reaction (RT-PCR) was used to quantify seven species of lactic acid bacteria (LAB) in alfalfa silage prepared in the presence or absence of four commercial inoculants and in uninoculated corn stover harvested and stored under a variety of field conditions. Species-specific PCR primers were designed based on recA gene sequences. Commercial inoculants improved the quality of alfalfa silage, but species corresponding to those in the inoculants displayed variations in persistence over the next 96 h. Lactobacillus brevis was the most abundant LAB (12 to 32% of total sample DNA) in all of the alfalfa silages by 96 h. Modest populations (up to 10%) of Lactobacillus plantarum were also observed in inoculated silages. Pediococcus pentosaceus populations increased over time but did not exceed 2% of the total. Small populations (0.1 to 1%) of Lactobacillus buchneri and Lactococcus lactis were observed in all silages, while Lactobacillus pentosus and Enterococcus faecium were near or below detection limits. Corn stover generally displayed higher populations of L. plantarum and L. brevis and lower populations of other LAB species. The data illustrate the utility of RT-PCR for quantifying individual species of LAB in conserved forages prepared under a wide variety of conditions.Disclaimer: Mention of products is for informational purposes only and does not imply a recommendation or warranty by USDA over other products that may also be suitable  相似文献   

9.
Two hundred and two strains of lactic acid bacteria (LAB) isolated from digestive tracts of cultivated and wild adult shrimp, including Litopenaeus vannamei, Metapenaeus brevicornis and Penaeus merguiensis were selected based on their antibacterial activity against Vibrio harveyi. LAB strain of MRO3.12 exhibiting highest reduction of V. harveyi was identified as Lactobacillus plantarum MRO3.12 based on the nucleotide sequence of its 16S rDNA, which showed 99% (780/786 bp) homology to L. plantarum strain L5 (GenBank accession number DQ 239698.1). Co-cultivation of V. harveyi and L. plantarum MRO3.12 showed complete reduction of V. harveyi at 24 h under aerobic and anaerobic conditions, whereas L. plantarum increased from 5.29 to 9.47 log CFU ml−1. After 6-week feeding trial with L. plantarum supplemented diet, white shrimp (L. vannamei) exhibited significant differences (p < 0.05) in relative growth rate (% RGR), feed conversion ratio (FCR) and survival compared to the control group fed with non-supplemented diet. LAB-fed group showed 98.89% survival, whereas only 68.89% survival was observed in the control group. LAB from the digestive tract of probiotic-fed shrimp showed higher level of 5.0 ± 0.14 log CFU/g than the non-supplemented ones (3.34 ± 0.21 log CFU/g). However, total bacterial and non-fermenting vibrios counts decreased in shrimps fed on L. plantarum. Ten days after infection with V. harveyi (5.3-5.5 log CFU ml−1), significant survival (p < 0.05) of 77% was observed in LAB supplemented shrimp, while only 67% survival was observed in the control.  相似文献   

10.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

11.
Ten γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) strains were isolated from kimchi and yoghurt. The strain B, isolated from kimchi showed the highest GABA-producing ability (3.68 g/L) in MRS broth with 1% monosodium glutamate (MSG). Strain B was identified as Lactococcus lactis subsp. lactis. The GABA-producing ability of L. lactis B was investigated using brown rice juice, germinated soybean juice and enzymolyzed skim milk as medium compositions. The D-optimal mixture design was applied to optimize the ratio of the three kinds of components in the media. The results showed that when the mixing ratio of brown rice juice, germinated soybean juice and enzymolyzed skim milk was 33:58:9 (v:v:v), the maximum GABA yield of L. lactis B was 6.41 g/L.  相似文献   

12.
Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.  相似文献   

13.
Aims: To evaluate the role of the peptidase activities from sourdough lactic acid bacteria (LAB) in the degradation of α‐gliadin fragments. Methods and Results: Different proline‐containing substrates were hydrolysed by LAB indicating pro‐specific peptidase activities. Lactobacillus plantarum CRL 775 and Pediococcus pentosaceus CRL 792 displayed the highest tri‐ and di‐peptidase activities, respectively. Lactobacillus plantarum strains hydrolysed more than 60%α‐gliadin fragments corresponding to the 31–43 and 62–75 amino acids in the protein after 2 h. None of the LAB strains alone could hydrolyse 57–89 α‐gliadin peptide; however, the combination of L. plantarum CRL 775 and P. pentosaceus CRL 792 led to hydrolysis (57%) of this peptide in 8 h. Conclusions: The capacity of LAB strains to degrade α‐gliadin fragments was not correlated to individual peptidase activities. Several strains separately degraded the 31–43 and 62–75 α‐gliadin fragments, while the 57–89 peptide degradation was associated with the combination of peptidase profiles from pooled LAB strains. This is the first report on the peptide hydrolase system of sourdough pediococci and its ability to reduce α‐gliadin fragments. Significance and Impact of the Study: This study contributes to a better knowledge of sourdough LAB proteolytic system and its role in the degradation of proline‐rich α‐gliadin peptides involved in celiac disease.  相似文献   

14.
内蒙古呼伦贝尔地区传统发酵乳中乳酸菌的多样性分析   总被引:2,自引:1,他引:1  
【目的】对内蒙古呼伦贝尔地区传统发酵乳制品中乳酸菌资源的生物多样性进行研究。【方法】采用纯培养和16S rRNA基因序列分析法对内蒙古呼伦贝尔地区传统发酵乳中的乳酸菌进行多样性分析。【结果】从8份传统发酵乳制品(6份酸牛奶和2份酸马奶)样品中分离到24株乳酸菌,通过16S rRNA基因序列分析和系统进化关系分析将24株乳酸菌鉴定为2株Lactobacillus kefiranofaciens、2株Lactobacillus kefiri、5株Lactobacillus paracasei、3株Lactobacillus plantarum、1株Lactobacillus rhamnosus、6株Lactococcus lactis subsp.lactis、2株Leuconostoc mesenteroides subsp.dextranicum、2株Streptococcus thermophilus和1株Enterococcus faecium。【结论】Lactococcus lactis subsp.lactis为内蒙古呼伦贝尔地区传统发酵乳制品的优势菌种,占总分离株的25%,其次为Lactobacillus paracasei,占总分离株的20.83%。  相似文献   

15.
The objective of the present study was to investigate lactic acid bacteria (LAB) isolated from kimchi for their potential probiotic use. Ten preselected LAB strains were evaluated for their functionality and safety. Examined characteristics included acid and bile tolerance, cell adhesion, antimicrobial activity against pathogens, hemolytic activity, undesirable biochemical characteristics, and antibiotic resistance. Results indicated that consumption of these 10 strains does not pose any health risk, as they were not hemolytic and exhibited no undesirable biochemical activity or antibiotic resistance. In particular, three strains, Lactobacillus plantarum NO1, Pediococcus pentosaceus MP1, and Lactobacillus plantarum AF1, showed high degrees of acid and bile tolerance, adherence to Caco-2 and HT-29 cells, and antimicrobial activity against four pathogens (Staphylococcus aureus, Escherichia coli O157:H7, Salmonella typhi, and Listeria monocytogenes). These results suggest that LAB strains from kimchi may have potential use as novel probiotics.  相似文献   

16.
A total of 102 lactic acid bacteria (LAB) were isolated from three different coffee farms in Taiwan. These isolates were classified and identified by the restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Heterofermentative Leuconostoc, and Weissella species were the most common LAB found in two farms located at an approximate altitude of 800 m. Lactococcus lactis subsp. lactis was the most common LAB found in the remaining farm was located at an approximate altitude of 1,200 m. It is therefore suggested that the altitude and climate may affect the distribution of LAB. On the basis of phylogenetic analysis, two strains included in the genera Enterococcus were considered as two potential novel species or subspecies. In addition, a total of 34 isolates showed the antifungal activity against Aspergillus flavus. Moreover, seven Lactococcus lactis subsp. lactis strains and one Enterococcus faecalis strain were found to have bacteriocin-like inhibitory substance-producing capability. These results suggest that various LAB are associated with fresh coffee cherries in Taiwan. Some of the isolates found in this study showed potential as antifungal agents.  相似文献   

17.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

18.
19.
The group that includes the lactic acid bacteria is one of the most diverse groups of bacteria known, and these organisms have been characterized extensively by using different techniques. In this study, 180 lactic acid bacterial strains isolated from sorghum powder (44 strains) and from corresponding fermented (93 strains) and cooked fermented (43 strains) porridge samples that were prepared in 15 households were characterized by using biochemical and physiological methods, as well as by analyzing the electrophoretic profiles of total soluble proteins. A total of 58 of the 180 strains were Lactobacillus plantarum strains, 47 were Leuconostoc mesenteroides strains, 25 were Lactobacillus sake-Lactobacillus curvatus strains, 17 were Pediococcus pentosaceus strains, 13 were Pediococcus acidilactici strains, and 7 were Lactococcus lactis strains. L. plantarum and L. mesenteroides strains were the dominant strains during the fermentation process and were recovered from 87 and 73% of the households, respectively. The potential origins of these groups of lactic acid bacteria were assessed by amplified fragment length polymorphism fingerprint analysis.  相似文献   

20.
Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号