首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.  相似文献   

2.

Introduction

Maximal Inspiratory Pressure (MIP) is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway.

Objectives

This study aimed to compare the MIP values assessed by standard method (MIPsta) and by unidirectional expiratory valve method (MIPuni) in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated.

Methods

This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B) at two moments (Tests 1 and 2) to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1]) was used to determine intraobserver and interobserver reproducibility.

Results

The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O) than the mean values for MIPsta (-102.5 ± 23.9 cmH2O) (p<0.001). Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91), and high correlation for Test 2 (ICC[2,1] = 0.88). The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86) and evaluator B (ICC[2,1] = 0.77).

Conclusions

MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway.  相似文献   

3.

Introduction

NLRP3 plays a role in sensing various pathogen components or stresses in the innate immune system. Once activated, NLRP3 associates with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and procaspase-1 to form a large protein complex termed inflammasome. Although some investigators have proposed a model of NLRP3-inflammasome containing an adaptor protein caspase recruitment domain-containing protein 8 (CARD8), the role of this molecule remains obscure. This study aimed to clarify the interaction between CARD8 and wild-type NLRP3 as well as mutant forms of NLRP3 linked with cryopyrin-associated periodic syndromes (CAPS).

Methods

In here HEK293 expression system, cells were transfected with the cDNAs for inflammasome components. Also used were peripheral blood mononuclear cells (PBMCs) and human monocyte-derived macrophages (HMDMs) from healthy volunteers. The interaction of CARD8 and NLRP3 was studied by immunoprecipitation. The effect of CARD8 expression on IL-1β secretion was assessed by ELISA. CARD8 knockdown experiments were carried out by transfection of the specific siRNA into HMDMs.

Results

In HEK293 cells, CARD8 interacted with wild-type NLRP3, but not with CAPS-associated mutant NLRP3. CARD8 significantly reduced IL-1β secretion from cells transfected with wild-type NLRP3, but not if they were transfected with mutant NLRP3. In addition, association of endogenously expressed CARD8 with NLRP3 was confirmed in resting PBMCs, and CARD8 knockdown resulted in higher amount of IL-1β secretion from HMDMs.

Conclusions

Until specific stimuli activate NLRP3, CARD8 holds NLRP3, and is supposed to prevent activation by subtle stimuli. However, CAPS-associated mutant NLRP3 is unable to bind with CARD8, which might be relevant to the pathogenesis of CAPS.  相似文献   

4.

Background

Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila.

Methods

Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed.

Conclusions/Significance

W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.  相似文献   

5.

Background

Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.

Methodology/Principal Findings

Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.

Conclusions/Significance

This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.  相似文献   

6.
7.

Introduction

High Resolution Melting (HRM) following PCR has been used to identify DNA genotypes. Fluorescent dyes bounded to double strand DNA lose their fluorescence with increasing temperature, yielding different signatures for different genotypes. Recent software tools have been made available to aid in the distinction of different genotypes, but they are not fully automated, used only for research purposes, or require some level of interaction or confirmation from an analyst.

Materials and Methods

We describe a fully automated machine learning software algorithm that classifies unknown genotypes. Dynamic melt curves are transformed to multidimensional clusters of points whereby a training set is used to establish the distribution of genotype clusters. Subsequently, probabilistic and statistical methods were used to classify the genotypes of unknown DNA samples on 4 different assays (40 VKORC1, CYP2C9*2, CYP2C9*3 samples in triplicate, and 49 MTHFR c.665C>T samples in triplicate) run on the Roche LC480. Melt curves of each of the triplicates were genotyped separately.

Results

Automated genotyping called 100% of VKORC1, CYP2C9*3 and MTHFR c.665C>T samples correctly. 97.5% of CYP2C9*2 melt curves were genotyped correctly with the remaining 2.5% given a no call due to the inability to decipher 3 melt curves in close proximity as either homozygous mutant or wild-type with greater than 99.5% posterior probability.

Conclusions

We demonstrate the ability to fully automate DNA genotyping from HRM curves systematically and accurately without requiring any user interpretation or interaction with the data. Visualization of genotype clusters and quantification of the expected misclassification rate is also available to provide feedback to assay scientists and engineers as changes are made to the assay or instrument.  相似文献   

8.

Aims

To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients.

Methods

Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed.

Results

Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation.

Conclusions

HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers.  相似文献   

9.

Objectives

TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92.

Methods

TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1.

Results

A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10−4). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor.

Conclusions

These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions.  相似文献   

10.
11.
12.

Introduction

The contribution of Gap junction beta-2 protein (GJB2) to the genetic load of deafness and its mutation spectra vary among different ethnic groups.

Objective

In this study, the mutation spectrum and audiologic features of patients with GJB2 mutations were evaluated with a specific focus on residual hearing.

Methods

An initial cohort of 588 subjects from 304 families with varying degrees of hearing loss were collected at the otolaryngology clinics of Seoul National University Hospital and Seoul National University Bundang Hospital from September 2010 through January 2014. GJB2 sequencing was carried out for 130 probands with sporadic or autosomal recessive non syndromic hearing loss. The audiograms were evaluated in the GJB2 mutants.

Results

Of the 130 subjects, 22 (16.9%) were found to carry at least one mutant allele of GJB2. The c.235delC mutation was shown to have the most common allele frequency (39.0%) among GJB2 mutations, followed by p.R143W (26.8%) and p.V37I (9.8%). Among those probands without the p.V37I allele in a trans configuration who showed some degree of residual hearing, the mean air conduction thresholds at 250 and 500 Hz were 57 dB HL and 77.8 dB HL, respectively. The c.235delC mutation showed a particularly wide spectrum of hearing loss, from mild to profound and significantly better hearing thresholds at 250 Hz and 2k Hz than in the non-p.V37I and non-235delC nonsyndromic hearing loss and deafness 1(DFNB1) subjects.

Conclusion

Despite its reputation as the cause of severe to profound deafness, c.235delC, the most frequent DFNB1 mutation in our cohort, caused a wide range of hearing loss with some residual hearing in low frequencies. This finding can be of paramount help for prediction of low frequency hearing thresholds in very young DFNB1 patients and highlights the importance of soft surgery for cochlear implantation in these patients.  相似文献   

13.

Rationale

Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD).

Methods

Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluoresence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization.

Results

Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid.

Conclusions

Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.  相似文献   

14.

Background

Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells.

Results

Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus.

Conclusions

Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation.  相似文献   

15.
16.

Aims

Mutations in the cardiac myosin-binding protein C gene (MYBPC3) are the most common genetic cause of hypertrophic cardiomyopathy (HCM) worldwide. The molecular mechanisms leading to HCM are poorly understood. We investigated the metabolic profiles of mutation carriers with the HCM-causing MYBPC3-Q1061X mutation with and without left ventricular hypertrophy (LVH) and non-affected relatives, and the association of the metabolome to the echocardiographic parameters.

Methods and Results

34 hypertrophic subjects carrying the MYBPC3-Q1061X mutation, 19 non-hypertrophic mutation carriers and 20 relatives with neither mutation nor hypertrophy were examined using comprehensive echocardiography. Plasma was analyzed for molecular lipids and polar metabolites using two metabolomics platforms. Concentrations of branched chain amino acids, triglycerides and ether phospholipids were increased in mutation carriers with hypertrophy as compared to controls and non-hypertrophic mutation carriers, and correlated with echocardiographic LVH and signs of diastolic and systolic dysfunction in subjects with the MYBPC3-Q1061X mutation.

Conclusions

Our study implicates the potential role of branched chain amino acids, triglycerides and ether phospholipids in HCM, as well as suggests an association of these metabolites with remodeling and dysfunction of the left ventricle.  相似文献   

17.
18.

Background

The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human β-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells.

Methods

Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells.

Results

We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid.

Conclusion

This data defines an additional role for TLR4 in the host defense in the lung.  相似文献   

19.

Background

Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear.

Results

In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells.

Conclusions

Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.  相似文献   

20.

Background

Abnormal activation of PI3K/AKT/mTOR (PAM) pathway, caused by PIK3CA mutation, KRAS mutation, PTEN loss, or AKT1 mutation, is one of the most frequent signaling abnormalities in breast carcinoma. However, distribution and frequencies of mutations in PAM pathway are unclear in breast cancer patients from the mainland of China and the correlation between these mutations and breast cancer outcome remains to be identified.

Methods

A total of 288 patients with invasive ductal breast cancer were recruited in this study. Mutations in PIK3CA (exons 4, 9 and 20), KRAS (exon 2) and AKT1 (exon 3) were detected using Sanger sequencing. PTEN loss was measured by immunohistochemistry assay. Correlations between these genetic aberrations and clinicopathological features were analyzed.

Results

The frequencies of PIK3CA mutation, KRAS mutation, AKT1 mutation and PTEN loss were 15.6%, 1.8%, 4.4% and 35.3%, respectively. However, except for PTEN loss, which was tied to estrogen receptor (ER) status, these alterations were not associated with other clinicopathological features. Survival analysis demonstrated that PIK3CA mutation, PTEN loss and PAM pathway activation were not associated with disease-free survival (DFS). Subgroup analysis of patients with ER positive tumors revealed that PIK3CA mutation more strongly reduced DFS compared to wild-type PIK3CA (76.2% vs. 54.2%; P = 0.011). PIK3CA mutation was also an independent factor for bad prognosis in ER positive patients.

Conclusions

AKT1, KRAS and PIK3CA mutations and PTEN loss all exist in women with breast cancer in the mainland China. PIK3CA mutation may contribute to the poor outcome of ER positive breast carcinomas, providing evidence for the combination of PI3K/AKT/mTOR inhibitors and endocrine therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号