首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E2 conjugating enzymes form a thiol ester intermediate with ubiquitin, which is subsequently transferred to a substrate protein targeted for degradation. While all E2 proteins comprise a catalytic domain where the thiol ester is formed, several E2s (class II) have C-terminal extensions proposed to control substrate recognition, dimerization, or polyubiquitin chain formation. Here we present the novel solution structure of the class II E2 conjugating enzyme Ubc1 from Saccharomyces cerevisiae. The structure shows the N-terminal catalytic domain adopts an alpha/beta fold typical of other E2 proteins. This domain is physically separated from its C-terminal domain by a 22-residue flexible tether. The C-terminal domain adopts a three-helix bundle that we have identified as an ubiquitin-associated domain (UBA). NMR chemical shift perturbation experiments show this UBA domain interacts in a regioselective manner with ubiquitin. This two-domain structure of Ubc1 was used to identify other UBA-containing class II E2 proteins, including human E2-25K, that likely have a similar architecture and to determine the role of the UBA domain in facilitating polyubiquitin chain formation.  相似文献   

2.
《Biophysical journal》2020,118(7):1679-1689
The ubiquitin (Ub) proteolysis pathway uses an E1, E2, and E3 enzyme cascade to label substrate proteins with ubiquitin and target them for degradation. The mechanisms of ubiquitin chain formation remain unclear and include a sequential addition model, in which polyubiquitin chains are built unit by unit on the substrate, or a preassembly model, in which polyubiquitin chains are preformed on the E2 or E3 enzyme and then transferred in one step to the substrate. The E2 conjugating enzyme UBE2K has a 150-residue catalytic core domain and a C-terminal ubiquitin-associated (UBA) domain. Polyubiquitin chains anchored to the catalytic cysteine and free in solution are formed by UBE2K supporting a preassembly model. To study how UBE2K might assemble polyubiquitin chains, we synthesized UBE2K-Ub and UBE2K-Ub2 covalent complexes and analyzed E2 interactions with the covalently attached Ub and Ub2 moieties using NMR spectroscopy. The UBE2K-Ub complex exists in multiple conformations, including the catalytically competent closed state independent of the UBA domain. In contrast, the UBE2K-Ub2 complex takes on a more extended conformation directed by interactions between the classic I44 hydrophobic face of the distal Ub and the conserved MGF hydrophobic patch of the UBA domain. Our results indicate there are distinct differences between the UBE2K-Ub and UBE2K-Ub2 complexes and show how the UBA domain can alter the position of a polyubiquitin chain attached to the UBE2K active site. These observations provide structural insights into the unique Ub chain-building capacity for UBE2K.  相似文献   

3.
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin‐conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin‐binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63‐linked polyubiquitin and facilitates the selective assembly of K48/K63‐branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.  相似文献   

4.
Degradation of misfolded and damaged proteins by the 26 S proteasome requires the substrate to be tagged with a polyubiquitin chain. Assembly of polyubiquitin chains and subsequent substrate labeling potentially involves three enzymes, an E1, E2, and E3. E2 proteins are key enzymes and form a thioester intermediate through their catalytic cysteine with the C-terminal glycine (Gly76) of ubiquitin. This thioester intermediate is easily hydrolyzed in vitro and has eluded structural characterization. To overcome this, we have engineered a novel ubiquitin-E2 disulfide-linked complex by mutating Gly76 to Cys76 in ubiquitin. Reaction of Ubc1, an E2 from Saccharomyces cerevisiae, with this mutant ubiquitin resulted in an ubiquitin-E2 disulfide that could be purified and was stable for several weeks. Chemical shift perturbation analysis of the disulfide ubiquitin-Ubc1 complex by NMR spectroscopy reveals an ubiquitin-Ubc1 interface similar to that for the ubiquitin-E2 thioester. In addition to the typical E2 catalytic domain, Ubc1 contains an ubiquitin-associated (UBA) domain, and we have utilized NMR spectroscopy to demonstrate that in this disulfide complex the UBA domain is freely accessible to non-covalently bind a second molecule of ubiquitin. The ability of the Ubc1 to bind two ubiquitin molecules suggests that the UBA domain does not interact with the thioester-bound ubiquitin during polyubiquitin chain formation. Thus, construction of this novel ubiquitin-E2 disulfide provides a method to characterize structurally the first step in polyubiquitin chain assembly by Ubc1 and its related class II enzymes.  相似文献   

5.
Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-kappaB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2-Ubc13-ubiquitin (UEV-E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2-Ubc13-Ub complex to the acceptor-binding site of Mms2-Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.  相似文献   

6.
BACKGROUND: Ubiquitin-conjugating enzymes (E2s) are central enzymes involved in ubiquitin-mediated protein degradation. During this process, ubiquitin (Ub) and the E2 protein form an unstable E2-Ub thiolester intermediate prior to the transfer of ubiquitin to an E3-ligase protein and the labeling of a substrate for degradation. A series of complex interactions occur among the target substrate, ubiquitin, E2, and E3 in order to efficiently facilitate the transfer of the ubiquitin molecule. However, due to the inherent instability of the E2-Ub thiolester, the structural details of this complex intermediate are not known. RESULTS: A three-dimensional model of the E2-Ub thiolester intermediate has been determined for the catalytic domain of the E2 protein Ubc1 (Ubc1(Delta450)) and ubiquitin from S. cerevisiae. The interface of the E2-Ub intermediate was determined by kinetically monitoring thiolester formation by 1H-(15)N HSQC spectra by using combinations of 15N-labeled and unlabeled Ubc1(Delta450) and Ub proteins. By using the surface interface as a guide and the X-ray structures of Ub and the 1.9 A structure of Ubc1(Delta450) determined here, docking simulations followed by energy minimization were used to produce the first model of a E2-Ub thiolester intermediate. CONCLUSIONS: Complementary surfaces were found on the E2 and Ub proteins whereby the C terminus of Ub wraps around the E2 protein terminating in the thiolester between C88 (Ubc1(Delta450)) and G76 (Ub). The model supports in vivo and in vitro experiments of E2 derivatives carrying surface residue substitutions. Furthermore, the model provides insights into the arrangement of Ub, E2, and E3 within a ternary targeting complex.  相似文献   

7.
E2-25K is an ubiquitin-conjugating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains. E2-25K and its homologs represent the only known E2 enzymes which contain a C-terminal ubiquitin-associated (UBA) domain as well as the conserved catalytic ubiquitin-conjugating (UBC) domain. As an additional non-covalent binding surface for ubiquitin, the UBA domain must provide some functional specialization. We mapped the protein–protein interface involved in the E2-25K UBA/ubiquitin complex by solution nuclear magnetic resonance (NMR) spectroscopy and subsequently modeled the structure of the complex. Domain–domain interactions between the E2-25K catalytic UBC domain and the UBA domain do not induce significant structural changes in the UBA domain or alter the affinity of the UBA domain for ubiquitin. We determined that one of the roles of the C-terminal UBA domain, in the context of E2-25K, is to increase processivity in Lys48-linked polyubiquitin chain synthesis, possibly through increased binding to the ubiquitinated substrate. Additionally, we see evidence that the UBA domain directs specificity in polyubiquitin chain linkage.  相似文献   

8.
E2 conjugating enzymes play a central role in ubiquitin and ubiquitin-like protein (ublp) transfer cascades: the E2 accepts the ublp from the E1 enzyme and then the E2 often interacts with an E3 enzyme to promote ublp transfer to the target. We report here the crystal structure of a complex between the C-terminal domain from NEDD8's heterodimeric E1 (APPBP1-UBA3) and the catalytic core domain of NEDD8's E2 (Ubc12). The structure and associated mutational analyses reveal molecular details of Ubc12 recruitment by NEDD8's E1. Interestingly, the E1's Ubc12 binding domain resembles ubiquitin and recruits Ubc12 in a manner mimicking ubiquitin's interactions with ubiquitin binding domains. Structural comparison with E2-E3 complexes indicates that the E1 and E3 binding sites on Ubc12 may overlap and raises the possibility that crosstalk between E1 and E3 interacting with an E2 could influence the specificity and processivity of ublp transfer.  相似文献   

9.
10.
EDD (or HYD) is an E3 ubiquitin ligase in the family of HECT (homologous to E6-AP C terminus) ligases. EDD contains an N-terminal ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Here, we use isothermal titration calorimetry (ITC), NMR titrations, and pull-down assays to show that the EDD UBA domain binds ubiquitin. The 1.85 A crystal structure of the complex with ubiquitin reveals the structural basis of ubiquitin recognition by UBA helices alpha1 and alpha3. The structure shows a larger number of intermolecular hydrogen bonds than observed in previous UBA/ubiquitin complexes. Two of these involve ordered water molecules. The functional importance of residues at the UBA/ubiquitin interface was confirmed using site-directed mutagenesis. Surface plasmon resonance (SPR) measurements show that the EDD UBA domain does not have a strong preference for polyubiquitin chains over monoubiquitin. This suggests that EDD binds to monoubiquitinated proteins, which is consistent with its involvement in DNA damage repair pathways.  相似文献   

11.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

12.
The biochemical and structural characterization of ubiquitin-conjugating enzymes (E2s) over the past 30 years has fostered important insights into ubiquitin transfer mechanisms. Although many of these enzymes share high sequence and structural conservation, their functional roles in the cell are decidedly diverse. Here, we report that the mono-ubiquitinating E2 UBE2W forms a homodimer using two distinct protein surfaces. Dimerization is primarily driven by residues in the ß-sheet region and Loops 4 and 7 of the catalytic domain. Mutation of two residues in the catalytic domain of UBE2W is capable of disrupting UBE2W homodimer formation, however, we find that dimerization of this E2 is not required for its ubiquitin transfer activity. In addition, residues in the C-terminal region, although not compulsory for the dimerization of UBE2W, play an ancillary role in the dimer interface. In all current E2 structures, the C-terminal helix of the UBC domain is at least 15Å away from the primary dimerization surface shown here for UBE2W. This leads to the proposal that the C-terminal region of UBE2W adopts a noncanonical position that places it closer to the UBC ß-sheet, providing the first indication that at least some E2s adopt C-terminal conformations different from the canonical structures observed to date.  相似文献   

13.
Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2–Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.  相似文献   

14.

Background  

Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2:E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains.  相似文献   

15.
CHIP is a ubiquitin ligase implicated in the degradation of misfolded proteins. In the November 23 issue of Molecular Cell, identified CHIP as a protein that interacts with the ubiquitin E2 complex Ubc13-Uev1A, which catalyzes the synthesis of Lys-63-linked polyubiquitin chains. Although the ubiquitin ligase activity of CHIP requires its dimerization through the U box domain, the crystal structure of the CHIP-E2 complex reveals that the protomers in the CHIP homodimer adopt distinct conformations such that only one U box of CHIP interacts with Ubc13.  相似文献   

16.
FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z.  相似文献   

17.
18.
Cells have quality-control mechanisms to recognize non-native protein structures and either help the proteins fold or promote their degradation. Ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) work together to assemble polyubiquitin chains on misfolded or misassembled proteins, which are then degraded by the proteasome. Here, we find that Ubc7, a yeast E2, can itself undergo degradation when its levels exceed that of its binding partner Cue1, a transmembrane protein that tethers Ubc7 to the endoplasmic reticulum. Unassembled, and thus mislocalized, Ubc7 is targeted to the proteasome by Ufd4, a homologous to E6-AP C-terminus (HECT)-class E3. Ubc7 is autoubiquitinated by a novel mechanism wherein the catalytic cysteine, instead of a lysine residue, provides the polyubiquitin chain acceptor site, and this cysteine-linked chain functions as a degradation signal. The polyubiquitin chain can also be transferred to a lysine side chain, suggesting a mechanism for polyubiquitin chain assembly that precedes substrate modification.  相似文献   

19.
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13–Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.  相似文献   

20.
Jiao Yang  Hong Peng  Yumin Xu 《Autophagy》2018,14(6):1072-1073
The alterations in cellular ubiquitin (Ub) homeostasis, known as Ub stress, feature and affect cellular responses in multiple conditions, yet the underlying mechanisms are incompletely understood. We recently reported that the macroautophagy/autophagy receptor SQSTM1/p62, functions as a novel Ub sensor to activate autophagy upon Ub+ stress (upregulation of the Ub level). First, SQSTM1 was found to undergo extensive ubiquitination and activate autophagy under Ub+ stress induced by prolonged Bortezomib (BTZ) treatment, Ub overexpression or by heat shock. Mechanistically, Ubiquitination of SQSTM1 disrupts its dimerization of the UBA domain, switching it from an auto-inhibitory conformation to recognize poly-ubiquitinated cargoes, promoting autophagic flux. Interestingly, Ub+ stress-responsive SQSTM1 ubiquitination is mediated by Ub conjugating enzymes, UBE2D2/3, in a unique E2-dependent manner. Our work has thus revealed a novel mechanism for how SQSTM1 senses cellular Ub stress conditions and regulates selective autophagy in response to diverse intrinsic or extrinsic challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号