首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

2.
3.

Background

A traditional Chinese medicine, Tetramethylpyrazine (TMP), has been prescribed as a complementary treatment for glaucoma to improve patient prognosis. However, the pharmacological mechanism of action of TMP is poorly understood. In previous studies, we demonstrated that TMP exerts potent inhibitory effects on neovascularization, suppresses the tumorigenic behavior of glioma cells, and protects neural cells by regulating CXCR4 expression. Here, we further investigated whether the SDF-1/CXCR4 pathway is also involved in the TMP-mediated activity in trabecular meshwork cells.

Methodology/Principal Findings

CXCR4 expression was examined by quantitative real-time PCR in trabecular and iris specimens from 54 primary open-angle glaucoma (POAG) patients who required surgery and 19 non-glaucomatous donors. Our data revealed markedly elevated CXCR4 expression in the trabecular meshwork of POAG patients compared with that of controls. Consistently, CXCR4 expression was much higher in glaucomatous trabecular meshwork cells than in normal trabecular meshwork cells. Using RT-PCR and western blot assays, we determined that glaucoma-related cytokines and dexamethasone (DEX) also significantly up-regulated CXCR4 expression in primary human trabecular meshwork (PHTM) cells. Moreover, the TGF-β1-mediated induction of CXCR4 expression in PHTM cells was markedly down-regulated by TMP compared with control treatment (PBS) and the CXCR4 antagonist AMD3100. In addition, TMP could counteract the TGF-β1-induced effects on stress fiber accumulation and expansion of PHTM cells. TMP markedly suppressed the migration of PHTM cells stimulated by TGF-β1 in transwell and scratch wound assays. TMP also suppressed the extracellular matrix (ECM) accumulation induced by TGF-β2.

Conclusions

Our findings demonstrate that CXCR4 might be involved in the pathogenetic changes in the trabecular meshwork of patients with POAG. Additionally, TMP might exert its beneficial effects in POAG patients by down-regulating CXCR4 expression.  相似文献   

4.
Autoantibodies against interferon-gamma (IFN-γ) can cause immunodeficiency and are associated with various opportunistic infections. In the present study, we investigated other cellular immune parameters for a better understanding of the immunodeficiency condition in the patients. The numbers of WBC, monocytes and NK cells were increased in patients with anti-IFN-γ autoantibodies (AAbs). Upon TCR activation, T cell proliferation and IL-2 receptor of the patients remained intact. Nonetheless, the Th1 cytokine (IFN-γ and TNF-α) production was up-regulated. The production of Th2 (IL-4) and Th17 (IL-17) cytokines was unchanged. We suggest that, in addition to the presence of anti-IFN-γ autoantibodies, alterations in the cellular immune functions may also contribute to this immunodeficiency.  相似文献   

5.
6.
Hosts infected with Fasciola hepatica experience immunosuppression during the acute and chronic phases of the disease. This immunosuppression may allow parasite survival in the face of an ongoing immune response. In bovine hosts early IL-4 and continued IgG1 production is one of the few remaining features of the characteristic type 0/2 helper (Th0/2) response present in the chronic stage of disease. Here we demonstrate elevated levels of parasite-specific, in vitro peripheral blood mononuclear cell (PBMC)-derived transforming growth factor (TGF)-β1 from the early phases of infection and increasing levels of IL-10 as the infection becomes chronic. In vitro neutralisation of these cytokines during culture of PBMCs from experimentally-infected cattle increased IL-4 and IFN-γ production in response to parasite-specific and non-specific stimulation. At 4 weeks p.i. neutralisation of TGF-β results in an increase in parasite driven IL-4, while also having a greater role, compared with IL-10, in influencing specific and non-specific IFN-γ. At 12 weeks p.i. ex vivo parasite driven IL-4 was not restored by inhibiting either IL-10 or TGF-β. However IL-10 influenced both parasite-specific and non-specific IFN-γ production at this time. This highlights the roles of IL-10 and TGF-β in fasciolosis, however the cellular sources of these have yet to be defined. This suggests that suppression of IFN-γ production by parasite molecules occurs during infection and it is possible that the suppression of IFN-γ production may mediate parasite survival in this disease.  相似文献   

7.
The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy.  相似文献   

8.

Background

Several intracellular Leishmania antigens have been identified in order to find a potential vaccine capable of conferring long lasting protection against Leishmania infection. Histones and Acid Ribosomal proteins are already known to induce an effective immune response and have successfully been tested in the cutaneous leishmaniasis mouse model. Here, we investigate the protective ability of L. infantum nucleosomal histones (HIS) and ribosomal acidic protein P0 (LiP0) against L. infantum infection in the hamster model of visceral leishmaniasis using two different strategies: homologous (plasmid DNA only) or heterologous immunization (plasmid DNA plus recombinant protein and adjuvant).

Methodology/Principal Findings

Immunization with both antigens using the heterologous strategy presented a high antibody production level while the homologous strategy immunized group showed predominantly a cellular immune response with parasite load reduction. The pcDNA-LiP0 immunized group showed increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β in the lymph nodes before challenge. Two months after infection hamsters immunized with the empty plasmid presented a pro-inflammatory immune response in the early stages of infection with increased expression ratio of IFN-γ/IL-10 and IFN-γ/TGF-β, whereas hamsters immunized with pcDNA-HIS presented an increase only in the ratio IFN-γ/ TGF-β. On the other hand, hamsters immunized with LiP0 did not present any increase in the IFN-γ/TGF-β and IFN-γ/IL-10 ratio independently of the immunization strategy used. Conversely, five months after infection, hamsters immunized with HIS maintained a pro-inflammatory immune response (ratio IFN-γ/ IL-10) while pcDNA-LiP0 immunized hamsters continued showing a balanced cytokine profile of pro and anti-inflammatory cytokines. Moreover we observed a significant reduction in parasite load in the spleen, liver and lymph node in this group compared with controls.

Conclusions/Significance

Our results suggest that vaccination with L. infantum LiP0 antigen administered in a DNA formulation could be considered a potential component in a vaccine formulation against visceral leishmaniasis.  相似文献   

9.
10.
Background/AimMultiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. Effector T helper cells, mainly Th1 and Th17, cytotoxic T-cells, B-cells, macrophages, microglia, and the cytokines they secrete, are implicated in the initiation and maintenance of a deregulated immune response to myelin antigens and the ensuing immune-mediated demyelination. In this study, we investigated whether signature cytokines exist in MS patients at presentation to gain an insight into the underlying immunopathogenic processes at the early stage of the disease.MethodsWe collected serum and cerebrospinal fluid (CSF) samples from 123 patients at presentation, eventually diagnosed with MS or non-inflammatory (NIND) or inflammatory neurological diseases (IND) or symptomatic controls (SC). The levels of cytokines IFN-γ, TNF-α, TGF-β1, IL-2, IL-4, IL-6, IL-10 and IL-17 were measured, and cytokine ratios, such as Th1/Th2, Th1/Th17, and Type-1/Type-2, were calculated. All parameters were tested for their correlations with the intrathecal IgG synthesis.ResultsCytokine levels in CSF were lower than in serum in all the patients, with the exception of IL-6. Serum or CSF cytokine levels of MS patients did not differ significantly from NIND or SC, with the exception of serum IFN-γ and TNF-α that were significantly higher in NIND. IND patients presented with the highest levels of all cytokines in serum and CSF, with the exception of serum IL-10 and CSF IL-17. MS patients had a significantly lower serum Th1/Th2 ratio compared to the NIND and IND groups, and significantly lower serum Type-1/Type-2, IFN-γ/IL-10 and CSF Th1/Th17 ratios compared to IND patients. MS patients had a significantly higher CSF IL-17/IL-10 ratio compared to IND patients. The IgG index was higher in MS patients compared to the control groups; the differences reached statistical significance between the MS and the NIND and SC groups. Reiber-Felgenhauer analysis of the QIgG and QAlb indices revealed higher intrathecal IgG synthesis in MS patients, and higher blood-CSF barrier dysfunction in IND patients. The IgG index correlated with CSF IL-4 in MS patients only.ConclusionsWe found no signature cytokines or profiles thereof in MS patients at presentation. Only IND patients presented with a clear Th1 cytokine polarization in serum and CSF. The parameters that distinguished MS patients from patients with other neurological disorders were IgG intrathecal synthesis, the IgG index and its correlation with CSF IL-4 levels.  相似文献   

11.
BackgroundChronic rhinosinusitis (CRS) is characterized by epithelial activation and chronic T-cell infiltration in sinonasal mucosa and nasal polyps. IL-33 is a new cytokine of the IL-1 cytokine family that has a pro-inflammatory and Th2 type cytokine induction property. The role of IL-33 in the pathomechanisms of CRS and its interaction with other T cell subsets remain to be fully understood.MethodsThe main trigger for IL-33 mRNA expression in primary human sinonasal epithelial cells was determined in multiple cytokine and T-cell stimulated cultures. The effects of IL-33 on naïve, Th0 and memory T-cells was studied by PCR, ELISA and flow cytometry. Biopsies from sinus tissue were analyzed by PCR and immunofluorescence for the presence of different cytokines and receptors with a special focus on IL-33.ResultsIL-33 was mainly induced by IFN-γ in primary sinonasal epithelial cells, and induced a typical CRSwNP Th2 favoring cytokine profile upon co-culture with T-helper cell subsets. IL-33 and its receptor ST2 were highly expressed in the inflamed epithelial tissue of CRS patients. While IL-33 was significantly up-regulated in the epithelium for CRSsNP, its receptor was higher expressed in sinus tissue from CRSwNP.ConclusionsThe present study delineates the influence of IL-33 in upper airway epithelium and a potential role of IL-33 in chronic inflammation of CRSwNP by enhancing Th2 type cytokine production, which could both contribute to a further increase of an established Th2 profile in CRSwNP.  相似文献   

12.
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.  相似文献   

13.
The apoE production by tissue macrophages is crucial for the prevention of atherosclerosis and the aim of this study was to further elucidate how this apolipoprotein is regulated by cytokines present during inflammation. Here we studied apoE production in peripheral blood mononuclear cells (PBMC) and analysis was made with a newly developed apoE ELISpot assay. In PBMC, apoE secretion was restricted to monocytes with classical (CD14++CD16) and intermediate (CD14+CD16+) monocytes being the main producers. As earlier described for macrophages, production was strongly upregulated by TGF-β and downregulated by bacterial lipopolysaccharide (LPS) and the inflammatory cytokines IFN-γ, TNF-α and IL-1β. We could here show that a similar down-regulatory effect was also observed with the type I interferon, IFN-α, while IL-6, often regarded as one of the more prominent inflammatory cytokines, did not affect TGF-β-induced apoE production. The TNF-α inhibitor Enbrel could partly block the down-regulatory effect of IFN-γ, IFN-α and IL-1β, indicating that inhibition of apoE by these cytokines may be dependent on or synergize with TNF-α. Other cytokines tested, IL-2, IL-4, IL-12, IL-13, IL-17A and IL-23, had no inhibitory effect on apoE production. In contrast to the effect on monocytes, apoE production by primary hepatocytes and the hepatoma cell line HepG2 was more or less unaffected by treatment with cytokines or LPS.  相似文献   

14.
Both Th1 and Th17 cells are important components of the immune response to Helicobacter pylori (Hp) in adults, but less is known about T cell responses to Hp during early childhood, when the infection is often acquired. We investigated Th1 and Th17 type responses to Hp in adults, children and infants in Bangladesh, where Hp is highly endemic. IL-17 and IFN-γ mRNA levels in gastric biopsies from Hp-infected Bangladeshi adults were analyzed and compared to levels in infected and uninfected Swedish controls. Since biopsies could not be collected from infants and children, cytokine responses in Bangladeshi infants (6–12 months), children (3–5 years) and adults (>19 years) were instead compared by stimulating peripheral blood mononuclear cells (PBMCs) with a Hp membrane preparation (MP) and analyzing culture supernatants by ELISA and cytometric bead array. We found significantly higher expression of IL-17 and IFN-γ mRNA in gastric mucosa of Hp-infected Bangladeshi and Swedish adults compared to uninfected Swedish controls. PBMCs from all age groups produced IL-17 and IFN-γ after MP stimulation, but little Th2 cytokines. IL-17 and IFN-γ were primarily produced by CD4+ T cells, since CD4+ T cell depleted PBMCs produced reduced amounts of these cytokines. Infant cells produced significantly more IL-17, but similar levels of IFN-γ, compared to adult cells after MP stimulation. In contrast, polyclonal stimulation induced lower levels IL-17 and IFN-γ in infant compared to adult PBMCs and CD4+ T cells. The strong IL-17 production in infants after MP stimulation was paralleled by significantly higher production of the IL-17 promoting cytokine IL-1β from infant compared to adult PBMCs and monocytes. In conclusion, these results show that T cells can produce high levels of IL-17 and IFN-γ in response to Hp from an early age and indicate a potential role for IL-1β in promoting Th17 responses to Hp during infancy.  相似文献   

15.
Bifidobacterium, which is a dominant genus in infants’ fecal flora and can be used as a probiotic, has shown beneficial effects in various pathologies, including allergic diseases, but its role in immunity has so far been little known. Numerous studies have shown the crucial role of the initial intestinal colonization in the development of the intestinal immune system, and bifidobacteria could play a major role in this process. For a better understanding of the effect of Bifidobacterium on the immune system, we aimed at determining the impact of Bifidobacterium on the T-helper 1 (TH1)/TH2 balance by using gnotobiotic mice. Germfree mice were inoculated with Bifidobacterium longum NCC2705, whose genome is sequenced, and with nine Bifidobacterium strains isolated from infants’ fecal flora. Five days after inoculation, mice were killed. Transforming growth factor β1 (TGF-β1), interleukin-4 (IL-4), IL-10, and gamma interferon (IFN-γ) gene expressions in the ileum and IFN-γ, tumor necrosis factor alpha (TNF-α), IL-10, IL-4, and IL-5 secretions by splenocytes cultivated for 48 h with concanavalin A were quantified. Two Bifidobacterium species had no effect (B. adolescentis) or little effect (B. breve) on the immune system. Bifidobacterium bifidum, Bifidobacterium dentium, and one B. longum strain induced TH1 and TH2 cytokines at the systemic and intestinal levels. One B. longum strain induced a TH2 orientation with high levels of IL-4 and IL-10, both secreted by splenocytes, and of TGF-β gene expression in the ileum. The other two strains induced TH1 orientations with high levels of IFN-γ and TNF-α splenocyte secretions. Bifidobacterium's capacity to stimulate immunity is species specific, but its influence on the orientation of the immune system is strain specific.  相似文献   

16.

Background:

Cutaneous leishmaniasis is an endemic disease in many regions of Iran, including the city of Mashhad. In recent years, some cases have not responded to Glucantime, the usual treatment for this disease. The cellular immune response caused by T-helper type 1 (Th1) cells has an important role in protection against leishmaniasis, and activation of the T-helper type 2 (Th2) response causes progression of the disease. By analyzing these responses we hope to find a more effective treatment than that currently in use for leishmaniasis patients.

Methods:

The cellular immune responses in 60 cases of non-healing and healing cutaneous leishmaniasis, and individuals in a control group, were analyzed by measuring cytokines released by peripheral blood mononuclear cells (PBMCs) when stimulated with Leishmania major antigens by Enzyme Linked Immuno Sorbent Assay (ELISA).

Results:

Subjects from the healing group secreted more interleukin-12 (IL-12) and interferon gamma (IFN-γ) (p<0.05) and less interleukins -4, -5, -10 (IL-4, IL-5, and IL-10) (p<0.005) and -18 (IL-18) (p=0.003) than the non-healing group.

Conclusions:

The results demonstrate that secretion of cytokines that activate Th2 response including IL-4, IL-5 and IL-10 in non-healing subjects was higher than healing subjects and secretion of cytokines that activate Th1 response including IL-12 and IFN-γ in healing subjects was higher relative to the non-healing subjects. In this study it has been shown that the level of IL-18 progresses disease in non-healing patients when the level of IL-12 gets decreased. Key Words: Cytokines, Cutaneous leishmaniasis, Glucantime  相似文献   

17.
Immune dysregulation in HIV-1 infection is associated with increased expression of inhibitory molecules such as CTLA-4, TGF-β, and IL-10. In this study we examined one potential mechanism for regulating TGF-β and IL-10 expression by HIV-specific suppressor CD8+ T cells. No overlap between TGF-β, IL-10, and IFN-γ cytokine production by HIV-specific CD8+ T cells was observed. TGF-β positive and IL-10 positive cells were FOXP3 negative, CD25 negative, and displayed a heterogeneous surface expression of CD127. TGF-β and IL-10 positive CD8+ T cells did not express CTLA-4. Nevertheless, CTLA-4 blockade resulted in a significant decrease in HIV-specific TGF-β positive and IL-10 positive CD8+ T cell responses, and a concomitant increase in HIV-specific IFN-γ positive CD8+ T cell responses. Depletion of CD4+ T cells abrogated the impact of CTLA-4 on HIV-specific TGF-β positive and IL-10 positive CD8+ T cells. Our study suggests that CTLA-4 Signaling on CD4+ T cells regulates the inhibitory functions of the HIV-specific suppressor CD8+ T cells.  相似文献   

18.
IL-33 contributes to disease processes in association with Th1 and Th2 phenotypes. IL-33 mRNA is rapidly regulated, but the fate of synthesized IL-33 protein is unknown. To understand the interplay among IL-33, IFN-γ, and IL-4 proteins, recombinant replication-deficient adenoviruses were produced and used for dual expression of IL-33 and IFN-γ or IL-33 and IL-4. The effects of such dual gene delivery were compared with the effects of similar expression of each of these cytokines alone. In lung fibroblast culture, co-expression of IL-33 and IFN-γ resulted in suppression of the levels of both proteins, whereas co-expression of IL-33 and IL-4 led to mutual elevation. In vivo, co-expression of IL-33 and IFN-γ in the lungs led to attenuation of IL-33 protein levels. Purified IFN-γ also attenuated IL-33 protein in fibroblast culture, suggesting that IFN-γ controls IL-33 protein degradation. Specific inhibition of caspase-1, -3, and -8 had minimal effect on IFN-γ-driven IL-33 protein down-regulation. Pharmacological inhibition, siRNA-mediated silencing, or gene deficiency of STAT1 potently up-regulated IL-33 protein expression levels and attenuated the down-regulating effect of IFN-γ on IL-33. Stimulation with IFN-γ strongly elevated the levels of the LMP2 proteasome subunit, known for its role in IFN-γ-regulated antigen processing. siRNA-mediated silencing of LMP2 expression abrogated the effect of IFN-γ on IL-33. Thus, IFN-γ, IL-4, and IL-33 are engaged in a complex interplay. The down-regulation of IL-33 protein levels by IFN-γ in pulmonary fibroblasts and in the lungs in vivo occurs through STAT1 and non-canonical use of the LMP2 proteasome subunit in a caspase-independent fashion.  相似文献   

19.

Background

Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood.

Objective

In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines.

Methods

Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays.

Results

The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release.

Conclusions

Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号