首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
Integra dermal regeneration template (Integra Life Sciences, Plainsboro, N.J.) is an effective treatment for full-thickness burns. It can also be useful in contracture release procedures; however, the clinical utility of a dermal regeneration template in contracture release procedures has not been adequately characterized. In this multicenter investigation, the outcomes of release procedures incorporating a dermal regeneration template for 89 consecutive patients, who underwent a total of 127 contracture releases, were retrospectively evaluated. The procedures involved the application of Integra, which includes a temporary silicone epidermal substitute and an artificial dermal layer. After formation of a neodermis, the silicone layer is removed and replaced with an epidermal autograft. Data on patient and contracture site history, treatment methods, physician assessments of range of motion or function, patient satisfaction, recurrence, and adverse events were collected with a standardized questionnaire. Release procedures for the study patients involved the neck, axilla, trunk, elbow, knee, hand, and other anatomical sites. The mean postoperative follow-up period was 11.4 months. At 76 percent of the release sites, range of motion or function was rated as good (significant improvement in range of motion or function) or excellent (maximal range of motion or function possible) by physicians. Responding patients expressed satisfaction with the overall results of treatment at 82 percent of the sites. No recurrence of contracture at 75 percent of the sites was observed during follow-up monitoring. Patient age and prior surgical treatment at the site did not significantly affect the results of treatment. However, outcomes were superior at mature sites, i.e., those for which more than 12 months had elapsed since the original injury. Postoperative complications rarely necessitated regrafting. These results indicate that a dermal regeneration template provides a useful alternative technique for contracture release procedures. The study data indicate that this approach leads to favorable functional outcomes and a high rate of patient satisfaction. This modality also seems to be versatile, because a range of anatomical sites are amenable to treatment with a dermal regeneration template, regardless of prior surgical treatment, and both pediatric and adult patients respond well to this form of therapy. Furthermore, Integra confers functional and cosmetic benefits similar to those of full-thickness grafts but without comparable potential for donor-site morbidity.  相似文献   

2.
Sericin has good hydrophilic properties, compatibility, and biodegradation, it can be used as a wound-healing agent. We evaluated the effects of sericin on wound healing and wound size reduction using rats by generating two full-thickness skin wounds on the dorsum. Group 1 animals were treated with Betadine® on left-side (control) wounds and, with 8% sericin cream on right-side (treated) wounds. Group 2, cream base (formula control) and 8% sericin cream (treated) were topically applied to left-, and right-side wounds respectively. Sericin-treated wounds had much smaller inflammatory reactions, and wound-size reduction was much greater than in the control throughout the inspection period. Mean time in days for 90% healing from sericin-treated wounds was also much less than for cream base-treated wounds. Histological examination after 15 d of treatment with 8% sericin cream revealed complete healing, no ulceration, and an increase in collagen as compared to cream base-treated wounds, which showed some ulceration and acute inflammatory exudative materials.  相似文献   

3.
4.
It is shown that the novel mitochondria-targeted antioxidant SkQ1, (10-(6′-plastoquinonyl) decyltriphenylphosphonium) stimulates healing of full-thickness dermal wounds in mice and rats. Treatment with nanomolar doses of SkQ1 in various formulations accelerated wound cleaning and suppressed neutrophil infiltration at the early (7 h) steps of inflammatory phase. SkQ1 stimulated formation of granulation tissue and increased the content of myofibroblasts in the beginning of regenerative phase of wound healing. Later this effect caused accumulation of collagen fibers. Local treatment with SkQ1 stimulated re-epithelization of the wound. Lifelong treatment of mice with SkQ1 supplemented with drinking water strongly stimulated skin wounds healing in old (28 months) animals. In an in vitro model of wound in human cell cultures, SkQ1 stimulated movement of epitheliocytes and fibroblasts into the “wound”. Myofibroblast differentiation of subcutaneous fibroblasts was stimulated by SkQ1. It is suggested that SkQ1 stimulates wound healing by suppression of the negative effects of oxidative stress in the wound and also by induction of differentiation. Restoration of regenerative processes in old animals is consistent with the “rejuvenation” effects of SkQ1, which prevents some gerontological diseases.  相似文献   

5.
The African spiny mouse (Acomys spp.) can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and Mus to characterize differences in wound healing, and identify mechanisms involved in scar-free healing. We also identify similarities with scar-free healing observed in fetal wounds. While wounding in Mus elicits a strong inflammatory response, wounding in Acomys produces a moderated immune response and little to no increase in expression for most cytokines and chemokines assayed. We also identified differences in the ECM profiles of the Acomys wounds, which appear to have a collagen profile more similar to fetal wounds, with larger increases in expression of collagen types III and V. In contrast, Mus wounds have very high levels of collagen XII. This data suggests that an overall lack of induction of cytokines and chemokines, coupled with an ECM profile more similar to fetal wounds, may underlie scar-free wound healing in Acomys skin. These data identify candidate genes for further testing in order to elucidate the causal mechanisms of scar-free healing.  相似文献   

6.
7.
Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.  相似文献   

8.
The technique of epidermal cell culture developed by Green and colleagues made a breakthrough in the treatment of massive wounds in vivo with grown cells in vitro. In the past two decades, progress of culture methods and clinical practice have been made and now it is possible to treat extensive skin defect with large amounts of cultured epithelium. Since 1985, we have been successfully used cultured epidermis as autografts for the permanent coverage of full-thickness burn wounds or excised burn scars, giant nevi, tattoos and so on. Furthermore, cultured epidermis has been available as allografts to promote the healing of chronic skin ulcers or deep dermal burn. In this paper we describe our clinical experience of cultured epithelium grafting for the treatment of wounds and predict new trial of wound management and regeneration based on tissue engineering concept.  相似文献   

9.
《Cytotherapy》2020,22(5):247-260
The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue–derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.  相似文献   

10.

Background

Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. The aim of this study was to evaluate clinical and histopathological alterations of Kombucha tea and Nitrofurazone on cutaneous full-thickness wounds healing in rat.

Methods

In present study 24 Wister -albino rats weighing 150–200 g were selected and divided to two treatment groups as Nitrofurazone ointment (0.2%) and Kombucha tea. Subsequently, the anesthesia was exerted by Ketamin hydrochloride 10% (40 mg/kg) and Xylasine (2 mg/kg) through intra muscular (IM) route. Furthermore, upon preparation of dorsal region of the animal for surgery, a piece of full-thickness skin removed (2?×?2 cm). In order to comparing wounds healing clinically and histologically, once every four days from the commencement, the wounds were photographed and the healed surface was measured by Scion image software.

Result

The clinical findings indicated that the Kombucha fungus resulted in precipitating healing than Nitrofurazone; however, it was not significant (p?>?0.05). In order to pathological comparing of wound healing process, several wound biopsies were taken on 4, 8, 12, 16 and 20th days. Additionally, the histopathological results demonstrated that there was inflammation in Nitrofurazone group through twelveth day, somehow the epithelium was formed and abundant vessels were visible. Although on 16th day and the previous days the healing condition of Kombucha fungus was considered as minimal rate, revealing it is similar to Nitrofurazone group on 20th day.

Conclusions

To wrap up. These observations suggest that the Kombucha fungus healing quality was rapid from 12th day to the end of the research, whereas no significant difference was observed.

Virtual slide

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1107407136102196
  相似文献   

11.
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.  相似文献   

12.
Large wounds resulting from severe injuries are generally treated with extended reconstructive operations (e.g., free flaps), which are accompanied by long hospitalizations and risks of infection, thrombosis, and flap loss. Integra is a collagen template that can be used for reconstruction of defects. The take rate and the rate of infection are essential for the successful use of Integra (Johnson and Johnson, Hamburg, Germany). Whether the take rate and integration of Integra could be improved with the use of fibrin glue and negative-pressure therapy was assessed. Between January of 2002 and December of 2002, patients with large defects who underwent Integra grafting for reconstruction were randomly divided into groups receiving either a new treatment with fibrin glue-anchored Integra and postoperative negative-pressure therapy or conventional treatment. Demographic features, cause of the wound, location of the wound, take rate, complications of Integra coverage, time from Integra coverage to skin transplantation, and functional and aesthetic results were assessed. Twelve patients (with similar group distributions with respect to sex, age, and location and cause of the injury) were included in the study. The take rate was 78 +/- 8 percent in the conventional treatment group and 98 +/- 2 percent in the fibrin/negative-pressure therapy group (p < 0.003). The mean period from Integra coverage to skin transplantation was 24 +/- 3 days in the conventional treatment group but only 10 +/- 1 days in the fibrin/negative-pressure therapy group (p < 0.002). The decrease in the interval between coverage with Integra and skin transplantation resulted in shorter hospital stays. The use of fibrin glue and negative-pressure therapy in combination with Integra could shorten the period from coverage to integration, which would be beneficial in terms of decreased risks of infection, thrombosis, and catabolism. Therefore, it is suggested that Integra be used in combination with fibrin glue and negative-pressure therapy to improve clinical outcomes and shorten hospital stays, with decreased risks of accompanying complications.  相似文献   

13.
Sericin has good hydrophilic properties, compatibility, and biodegradation, it can be used as a wound-healing agent. We evaluated the effects of sericin on wound healing and wound size reduction using rats by generating two full-thickness skin wounds on the dorsum. Group 1 animals were treated with Betadine on left-side (control) wounds and, with 8% sericin cream on right-side (treated) wounds. Group 2, cream base (formula control) and 8% sericin cream (treated) were topically applied to left-, and right-side wounds respectively. Sericin-treated wounds had much smaller inflammatory reactions, and wound-size reduction was much greater than in the control throughout the inspection period. Mean time in days for 90% healing from sericin-treated wounds was also much less than for cream base-treated wounds. Histological examination after 15 d of treatment with 8% sericin cream revealed complete healing, no ulceration, and an increase in collagen as compared to cream base-treated wounds, which showed some ulceration and acute inflammatory exudative materials.  相似文献   

14.
In whole body cryotherapy the whole human body is exposed to low temperature below −100°C in a special room called cryogenic chamber for a very short period of time (2–3 minutes). The impact of cold can cause many different biochemical and physiological reactions of the organism.The skin temperature response due to whole body cryotherapy was studied by means of infrared measurements. The thermograms of chosen body parts of patients suffering from low back pain were performed before and after whole body cooling on the 1st, 5th and the last (10th) day of medical treatment. Infrared imaging performed after cold impact owing to the enhancement of the skin temperature profile may reveal a slight decrease of the inflammatory states as a result of the 10 sessions of cryotherapy.  相似文献   

15.
Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration.  相似文献   

16.
Yuan  Jifang  Hou  Qian  Chen  Deyun  Zhong  Lingzhi  Dai  Xin  Zhu  Ziying  Li  Meirong  Fu  Xiaobing 《中国科学:生命科学英文版》2020,63(4):552-562
Small molecules loaded into biological materials present a promising strategy for stimulating endogenous repair mechanisms for in situ skin regeneration. Lithium can modulate various biologic processes, promoting proliferation, angiogenesis, and decreasing inflammation. However, its role in skin repair is rarely reported. In this study, we loaded lithium chloride(LiCl) into the chitosan(CHI) hydrogel and develop a sterile and biocompatible sponge scaffold through freeze-drying. In-vitro assessment demonstrated that the CHI-LiCl composite scaffolds(CLiS) possessed favorable cytocompatibility, swelling and biodegradation.We created full-thickness skin wounds in male C57BL/c mice to evaluate the healing capacity of CLiS. Compared with the wounds of control and CHI scaffold(CS) groups, the wounds in the CLiS-treated group showed reduced inflammation, improved angiogenesis, accelerated re-epithelialization, sustained high expression of β-catenin with a small amount of regenerated hair follicles. Therefore, CLiS may be a promising therapeutic dressing for skin wound repair and regeneration.  相似文献   

17.
In animal models it has been shown that mesenchymal stromal cells (MSC) contribute to skin regeneration and accelerate wound healing. We evaluated whether allogeneic MSC administration resulted in an improvement in the skin of two patients with recessive dystrophic epidermolysis bullosa (RDEB; OMIM 226600). Patients had absent type VII collagen immunohistofluorescence and since birth had suffered severe blistering and wounds that heal with scarring. Vehicle or 0.5 × 106 MSC were infused intradermally in intact and chronic ulcerated sites. One week after intervention, in MSC-treated skin type VII collagen was detected along the basement membrane zone and the dermal–epidermal junction was continuous. Re-epithelialization of chronic ulcerated skin was observed only near MSC administration sites. In both patients the observed clinical benefit lasted for 4 months. Thus intradermal administration of allogeneic MSC associates with type VII collagen replenishment at the dermal–epidermal junction, prevents blistering and improves wound healing in unconditioned patients with RDEB.  相似文献   

18.
Fetal wounds pass from scarless repair to healing with scar formation during gestation. This transition depends on both the size of the wound and the gestational age of the fetus. This study defines the transition period in the fetal rat model and provides new insight into scarless collagen wound architecture by using confocal microscopy. A total of 16 pregnant Sprague-Dawley rats were operated on. Open full-thickness wounds, 2 mm in diameter, were created on fetal rats at gestational ages 14.5 days (E14; n = 10), 16.5 days (E16; n = 42), and 18.5 days (E18; n = 42) (term = 21.5 days). Wounds were harvested at 24 (n = 18 per gestational age) and 72 hours (n = 24 per gestational age). Skin at identical gestational ages to wound harvest was used for controls. The wounds were fixed and stained with hematoxylin and eosin, antibody to type I collagen, and Sirius red for confocal microscopic evaluation. No E14 rat fetuses survived to wound harvest. Wounds created on E16 fetal rats healed completely and without scarring. E16 fetal rat hair follicle formation and collagen architecture was similar to that of normal, nonwounded skin. Wounds created on E18 fetal rats demonstrated slower healing; only 50 percent were completely healed at 72 hours compared with 100 percent of the E16 fetal rat wounds at 72 hours. Furthermore, the E18 wounds healed with collagen scar formation and without hair follicle formation. Confocal microscopy demonstrated that the collagen fibers were thin and arranged in a wispy pattern in E16 fetal rat wounds and in nonwounded dermis. E18 fetal rat wounds had thickened collagen fibers with large interfiber distances. Two-millimeter excisional E16 fetal rat wounds heal without scar formation and with regeneration of normal dermal and epidermal appendage architecture. E18 fetal rat wounds heal in a pattern similar to that of adult cutaneous wounds, with scar formation and absence of epidermal appendages. Confocal microscopy more clearly defined the dermal architecture in normal skin, scarless wounds, and scars. These data further define the transition period in the fetal rat wound model, which promises to be an effective system for the study of in vivo scarless wound healing.  相似文献   

19.
《Organogenesis》2013,9(3):195-200
Full thickness skin wounds in humans heal with scars, but without regeneration of the dermis. A degradable poly(urethane urea) scaffold (PUUR), ArtelonÃ?® is already used to reinforce soft tissues in orthopaedics, and for treatment of osteoarthritis of the hand, wrist, and foot. In this paper we have done in vitro experiments followed by in vivo studies to find out whether the PUUR is biocompatible and usable as a template for dermal regeneration. Human dermal fibroblasts were cultured on discs of PUUR, with different macrostructures (fibrous and porous). They adhered to and migrated into the scaffolds, and produced collagen. The porous scaffold was judged more suitable for clinical applications and 4 mm Ã?Â?, 2 mm-thick discs of porous scaffold (12% w/w or 9% w/w polymer solution) were inserted intradermally in four healthy human volunteers. The implants were well tolerated and increasing ingrowth of fibroblasts was seen over time in all subjects. The fibroblasts stained immunohistochemically for procollagen and von Willebrand factor, indicating neocollagenesis and angiogenesis within the scaffolds. The PUUR scaffold may be a suitable material to use as a template for dermal regeneration.  相似文献   

20.
Combination of a 3-D scaffold with the emerging RNA interference (RNAi) technique represents the latest paradigm of regenerative medicine. In our recent paper “RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring” in the journal Biomaterials, we not only demonstrated a 3-D system for siRNA sustained delivery, but also presented a comprehensive in vivo study by targeting a vital problem in skin regeneration: scarring. It is expected that further development of this kind of RNAi functionalized scaffold can provide a better platform for directing cell fates by integrating the “down-regulating” biomolecular cues into the cellular microenvironment, leading to the complete functional regeneration of skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号