首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma cruzi calreticulin (TcCRT) is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/−) and another overexpressing it (TcCRT+), both derived from the attenuated TCC T. cruzi strain. The TcCRT+/− mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/− parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/− inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/− parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/− clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor.  相似文献   

2.
Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites’ antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson’s coefficient: 0.617, 0.771, 0.499; respectively, < 0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease.  相似文献   

3.
Trypanosoma cruzi the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcII and TcVI aggressive and TcI low virulent strains and found variable aTS number (1–32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28–32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcII and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcIII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the “Two Hybridization” and the “Three Ancestor” was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.  相似文献   

4.
Trans-sialidase (TS), a virulence factor from Trypanosoma cruzi, is an enzyme playing key roles in the biology of this protozoan parasite. Absent from the mammalian host, it constitutes a potential target for the development of novel chemotherapeutic drugs, an urgent need to combat Chagas'' disease. TS is involved in host cell invasion and parasite survival in the bloodstream. However, TS is also actively shed by the parasite to the bloodstream, inducing systemic effects readily detected during the acute phase of the disease, in particular, hematological alterations and triggering of immune cells apoptosis, until specific neutralizing antibodies are elicited. These antibodies constitute the only known submicromolar inhibitor of TS''s catalytic activity. We now report the identification and detailed characterization of a neutralizing mouse monoclonal antibody (mAb 13G9), recognizing T. cruzi TS with high specificity and subnanomolar affinity. This mAb displays undetectable association with the T. cruzi superfamily of TS-like proteins or yet with the TS-related enzymes from Trypanosoma brucei or Trypanosoma rangeli. In immunofluorescence assays, mAb 13G9 labeled 100% of the parasites from the infective trypomastigote stage. This mAb also reduces parasite invasion of cultured cells and strongly inhibits parasite surface sialylation. The crystal structure of the mAb 13G9 antigen-binding fragment in complex with the globular region of T. cruzi TS was determined, revealing detailed molecular insights of the inhibition mechanism. Not occluding the enzyme''s catalytic site, the antibody performs a subtle action by inhibiting the movement of an assisting tyrosine (Y119), whose mobility is known to play a key role in the trans-glycosidase mechanism. As an example of enzymatic inhibition involving non-catalytic residues that occupy sites distal from the substrate-binding pocket, this first near atomic characterization of a high affinity inhibitory molecule for TS provides a rational framework for novel strategies in the design of chemotherapeutic compounds.  相似文献   

5.
Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by R. necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.  相似文献   

6.

Background

T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection.

Methodology/Principal Findings

Our in vitro studies demonstrated the first evidence that IFN-γ would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-α, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-γ we found that the latter is crucial for controlling infection by G strain amastigotes.

Conclusions/Significance

Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-γ production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.  相似文献   

7.
Trypanosoma cruzi is a protozoan parasite that comprises different phylogenetic groups and is the causative agent of Chagas’ disease. Different T. cruzi strains present differences in infectivity in in vitro and in vivo experimental models, which are likely related to the expression of different virulence factors. Amastin is a surface glycoprotein abundantly expressed on the intracellular mammalian amastigote form of the parasite. In this study, we showed that a highly infective strain (G strain) of extracellular amastigote (EA) invasive forms expressed reduced RNA levels of amastin compared to a less infective strain (CL). The treatment of HeLa cells with recombinant δ-amastin reduced infectivity of EA forms. However, the ectopic expression of δ-amastin accelerated amastigote differentiation into trypomastigotes. Corroborating the virulence behavior in association with amastin expression, the EAs overexpressing amastin were precociously and robustly observed in the liver of susceptible mouse strains (A/JUnib), whereas parasitemia was never detected in in vivo assays. This is the first report on the regulatory role of amastin in the course of both in vitro and in vivo T. cruzi infection.  相似文献   

8.
Many studies of influenza severity have focused on viral properties that confer virulence, whereas the contributory role of the host genetic background on infection severity remains largely unexplored. In this study, we measure the impact of inoculation with influenza virus in four strains of inbred mice - BALB/cByJ, C57BL/6 J, A/J, and DBA/2 J. To evaluate the extent to which responses are inherent to lung per se, as opposed to effects of the systemic response to lung infection, we also measured cytokines and chemokines in lung slices exposed to the virus in vitro. Finally, we evaluate the in vivo responses of recombinant inbred (RI) and select consomic strains of mice to search for genomic loci that contribute to phenotypic variance in response to influenza infection. We found marked variation among mouse strains after challenge with virus strain A/HKX31(H3N2), consistent with previous reports using more virulent strains. Furthermore, response patterns differ after in vivo versus in vitro exposure of lung to virus, supporting a predominant role of the systemic host inflammatory response in generating the strain differences. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of influenza infections.  相似文献   

9.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

10.
Seedlings of natural crops are valuable sources of pharmacologically active phytochemicals. In this study, we aimed to identify new active secondary metabolites in Avena sativa L. (oat) seedlings. Two new compounds, avenafuranol (1) and diosgenoside (2), along with eight known compounds (310) were isolated from the A. sativa L. seedlings. Their chemical structures were elucidated via 1D and 2D NMR spectroscopy, high-resolution ESIMS, IR spectroscopy, optical rotation analysis, and comparisons with the reported literature. The effect of each isolated compound on alkaline phosphatase (ALP) activity for osteoblast differentiation induced by bone morphogenetic protein-2 (BMP-2) was investigated using the C2C12 immortal mouse myoblast cell line. Compounds 1, 4, 6, 8, and 9 induced dose-dependent increases in ALP expression relative to ALP expression in cells treated with only BMP-2, and no cytotoxicity was observed. These results suggest that A. sativa L. seedlings are a natural source of compounds that may be useful for preventing bone disorders.  相似文献   

11.
Aromatic oligovalent glycosyl disulfides and some diglycosyl disulfides were tested against three different Trypanosoma cruzi strains. Di-(β-d-galactopyranosyl-dithiomethylene) benzenes 2b and 4b proved to be the most active derivatives against all three strains of cell culture-derived trypomastigotes with IC50 values ranging from 4 to 11 μM at 37 °C. The inhibitory activities were maintained, although somewhat lowered, at a temperature of 4 °C as well. Three further derivatives displayed similar activities against at least one of the three strains. Low cytotoxicities of the active compounds, tested on confluent HeLa, Vero and peritoneal macrophage cell cultures, resulted in significantly higher selectivity indices (SI) than that of the reference drug benznidazole. Remarkably, several molecules of the tested panel strongly inhibited the parasite release from T. cruzi infected HeLa cell cultures suggesting an effect against the intracellular development of T. cruzi amastigotes as well.  相似文献   

12.
In this paper, we report the structural design, synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazone (NAH) derivatives, planned as cruzain inhibitors candidates, a cysteine protease essential for the survival of Trypanosoma cruzi within the host cell. The salicylaldehyde N-acylhydrazones 7a and 8a presented IC50 values of the same magnitude order than the standard drug nifurtimox (Nfx), when tested in vitro against epimastigote forms of Trypanosoma cruzi (Tulahuen 2 strain) and were non-toxic at the highest assayed doses rendering selectivity indexes (IC50 (macrophages)/IC50 (Trypanosoma cruzi)) of >25 for 7a and >20 for 8a, with IC50 values in macrophages >400 μM.  相似文献   

13.
The diterpenoids (+)-ferruginol (1), ent-kaur-16-en-15-one (2), ent-8(14),15-sandaracopimaradiene-2α,18-diol (3), 8(14),15-sandaracopimaradiene-2α,18,19-triol (4), and (+)-sugiol (5) and the triterpenoids 3β-methoxycycloartan-24(241)-ene (6), 3β,23β-dimethoxycycloartan-24(241)-ene (7), 3β,23β-dimethoxy-5α-lanosta-24(241)-ene (8), and 23(S)-23-methoxy-24-methylenelanosta-8-en-3-one (9), isolated from Amentotaxus formosana, showed inhibitory effects on xanthine oxidase (XO). Of the compounds tested, compound 5 was a potent inhibitor of XO activity, with an IC50 value of 6.8 ± 0.4 μM, while displaying weak ABTS radical cation scavenging activity. Treatment of the bladder cancer cell line, NTUB1, with 3–10 μM of compound 5 and 10 μM cisplatin, and immortalized normal human urothelial cell line, SV-HUC1, with 0.3–1 μM and 10–50 μM of compound 5 and 10 μM cisplatin, respectively, resulted in increased viability of cells compared with cytotoxicity induced by cisplatin. Treatment of NTUB1 with 20 μM cisplatin and 10 or 30 μM of compound 5 resulted in decreased ROS production compared with ROS production induced by cisplatin. These results indicate that 10 or 30 μM of compound 5 in NTUB1 cells may mediate through the suppression of XO activity and reduction of reactive oxygen species (ROS) induced by compound 5 cotreated with 20 μM cisplatin and protection of subsequent cell death.  相似文献   

14.
Previous studies have demonstrated loss/reduction of dystrophin in cardiomyocytes in both acute and chronic stages of experimental Trypanosoma cruzi (T. cruzi) infection in mice. The mechanisms responsible for dystrophin disruption in the hearts of mice acutely infected with T. cruzi are not completely understood. The present in vivo and in vitro studies were undertaken to evaluate the role of inflammation in dystrophin disruption and its correlation with the high mortality rate during acute infection. C57BL/6 mice were infected with T. cruzi and killed 14, 20 and 26 days post infection (dpi). The intensity of inflammation, cardiac expression of dystrophin, calpain-1, NF-κB, TNF-α, and sarcolemmal permeability were evaluated. Cultured neonatal murine cardiomyocytes were incubated with serum, collected at the peak of cytokine production and free of parasites, from T. cruzi-infected mice and dystrophin, calpain-1, and NF-κB expression analyzed. Dystrophin disruption occurs at the peak of mortality and inflammation and is associated with increased expression of calpain-1, TNF-α, NF-κB, and increased sarcolemmal permeability in the heart of T. cruzi-infected mice at 20 dpi confirmed by in vitro studies. The peak of mortality occurred only when significant loss of dystrophin in the hearts of infected animals occurred, highlighting the correlation between inflammation, dystrophin loss and mortality.  相似文献   

15.

Background

The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute infection.

Methodology/Principal Findings

Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6 mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific humoral responses in the resistant C57Bl/6 mice.

Conclusions/Significance

The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine responses were associated with amplified polyclonal B cell activation and diminished specific humoral immunity. These results demonstrate that polyclonal B cell activation during acute experimental Chagas disease is not a generalized response and suggest that the nature of humoral immunity during T. cruzi infection contributes to host susceptibility.  相似文献   

16.
Protozoan pathogens that cause neglected tropical diseases are a major public health concern in tropical and developing countries. In the course of our ongoing search for new lead compounds as potential antiprotozoal agents, this study aims to perform a bio-guided fractionation of Pituranthos battandieri, using an in vitro assay against Leishmania amazonensis and Trypanosoma cruzi. Two known polyacetylenes, (−)-panaxydiol (1) and (−)-falcarindiol (2) were identified from the ethanolic extract of the aerial parts of P. battandieri as the main bioactive constituents. Compounds 1 and 2 showed similar potency (IC50 values of 5.76 and 5.68 μM, respectively) against L. amazonensis to miltefosine (IC50 value of 6.48 μM), the reference drug, and low toxicity on macrophage cell lines J774. Moreover, compound 1 exhibited moderate activity (IC50 23.24 μM) against T. cruzi. In addition, three known furanocoumarins, 8-geranyloxypsoralen (3), 8-geranyloxy-5-methoxypsoralen (4), and phellopterin (5) were isolated. Their structures were elucidated by NMR and MS analysis. Compounds 1 and 2 are described for the first time in the Pituranthos genus, and this is the first report on their antiprotozoal activity. These results highlight this type of polyacetylenes as an interesting scaffold for the development of novel antiparasitic drugs.  相似文献   

17.
Certain iminonaphtho[2,3-b]furan derivatives were synthesized from their respective carbonyl precursors in the regiospecific and the stereospecific manners. These compounds were evaluated for their antiproliferative effects against four human carcinoma cells (MCF7, NCI-H460, SF-268, and K562) and the normal fibroblast cell line (Detroit 551). Among them, (Z)-4-(hydroxyimino)naphtho[2,3-b]furan-9(4H)-one (8) and (Z)-4-methoxy-iminonaphtho[2,3-b]furan-9(4H)-one (9) exhibited GI50 values of 0.82 and 0.60 μM, respectively, against the growth of K562 cells and were inactive against the normal fibroblast Detroit 551. The selectivity index (SI) on K562 cell for 8 and 9 was >121.95 and >166.67, respectively, which is comparable to daunorubicin (SI = 239) and is more favorable than camptothecin (SI = 16.5). The cell cycle analysis on K562 indicated that these compounds arrest the cell cycle at the G2/M phase. The morphological assessment and DNA fragmentation analysis indicated that 9-induced cell apoptosis in K562 cells. The apoptotic induction may through caspase-3 activity and cleavage of PARP.  相似文献   

18.
A group of novel l-serinamides, substituted (S)-2-(benzylideneamino)-3-hydroxy-N-tetradecylpropanamides (3ao) and substituted (S)-2-(benzylamino)-3-hydroxy-N-tetradecyl propanamides (4c, 4i, 4l, and 4o), were synthesized as potential anti-tumor lead compounds. In vitro cell viability assay results indicate treatment with 3ao compounds resulted in significant inhibition of cell viability in the chemoresistant breast cancer cell line, MCF-7TN-R. Compounds 3i and 3l, both ortho-substituted analogs, show the greatest efficacy with IC50 values of 10.3 μM and 12.5 μM, respectively. The SAR analysis indicate that the imine functional group of 3ao is critical for the cellular anti-viability effect, and the partial atomic charge (PAC) value of imine C atom is a valuable structural parameter for predicting the activity of these ceramide analogs.  相似文献   

19.
Two epimers of malyngamide C, 8-O-acetyl-8-epi-malyngamide C (1) and 8-epi-malyngamide C (3) have been isolated along with known compounds 6-O-acetylmalyngamide F (5), H (6), J (7) K (8), and characterized from a Grenada field collection of the marine cyanobacterium Lyngbya majuscula. The structures of these compounds were deduced by 1D and 2D NMR spectroscopic and mass spectral data interpretation. Absolute configurations were determined by a combination of CD-spectroscopy, chemical degradation and the variable temperature Mosher’s method. Compounds 15, 7 and 8 displayed moderate cytotoxicity to NCI-H460 human lung tumor and neuro-2a cancer cell lines, with IC50 values ranging between 0.5 and 20 μg/mL.  相似文献   

20.
The high mutation rate of RNA viruses has resulted in limitation of vaccine effectiveness and increased emergence of drug-resistant viruses. New effective antivirals are therefore needed to control of the highly mutative RNA viruses. The n-butanol fraction of the stem bark of Mangifera indica exhibited inhibitory activity against influenza neuraminidase (NA) and coxsackie virus 3C protease. Bioassay guided phytochemical study of M. indica stem bark afforded two new compounds including one benzophenone C-glycoside (4) and one xanthone dimer (7), together with eleven known compounds. The structures of these isolated compounds were elucidated on the basis of spectroscopic evidences and correlated with known compounds. Anti-influenza and anti-coxsackie virus activities were evaluated by determining the inhibition of anti-influenza neuraminidase (NA) from pandemic A/RI/5+/1957 H2N2 influenza A virus and inhibition of coxsackie B3 virus 3C protease, respectively. The highest anti-influenza activity was observed for compounds 8 and 9 with IC50 values of 11.9 and 9.2 μM, respectively. Compounds 8 and 9 were even more potent against coxsackie B3 virus 3C protease, with IC50 values of 1.1 and 2.0 μM, respectively. Compounds 8 and 9 showed weak cytotoxic effect against human hepatocellular carcinoma and human epithelial carcinoma cell lines through MTT assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号