首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term (31-hour diurnal) growth-chamber studies were conducted to determine the effects of removing the vegetative apex (meristem and developing trifoliolate leaves) on net photosynthesis (changes in plant dry weight), on distribution of metabolites among plant parts, and on nitrate metabolism and reduced-N accumulation by soybean [Glycine max (L.) Merr.] seedlings. Roots and stems served as alternate sinks for dry matter accumulation in the absence of the vegetative apex. Sugar concentration in roots increased (42%) within 4 hours of vegetative apex removal, and remained higher than for the controls during the 31-hour experimental period. Nitrate assimilation (nitrate reductase activity and total accumulation of reduced-N) was also enhanced in response to vegetative apex removal. Although dry matter accumulation was similar between treated and control plants (113 versus 116 milligrams per plant) over the 31-hour sampling period, more nitrate (1.31 versus 0.79 milligrams per plant) and more reduced-N (3.96 versus 3.45 milligrams per plant) accumulated in treated plants during the same interval. It was concluded that vegetative apex removal had little effect on overall net photosynthesis of soybean seedlings during the 31-hour treatment period, but did alter partitioning of photosynthate and enhanced uptake, transport, and reduction of nitrate. Implications are that uptake and metabolism of nitrate by soybeans may be limited by flux of carbohydrate to the roots, although hormonal effects due to vegetative apex removal cannot be ruled out.  相似文献   

2.
Transgenerational interactions between flower color, seed quality, and seedling performance have rarely been investigated. The ecological model, Ipomopsis aggregata, is a great candidate for examining the maternal effects of flower color because it is a mostly scarlet-flowering plant which shows color polymorphism within natural populations. Anthocyanin, the red flavonoid pigment which gives these flowers color, has been shown to act as an ultraviolet (UV) protectant by shielding chloroplasts and acting as an antioxidant. This study was conducted on scarlet- and fuchsia-flowering maternal plants and their seeds from natural populations in Colorado. Dark-flowering (scarlet) maternal plants from these populations had consistently higher foliar anthocyanin content, photosystem efficiency, and chlorophyll content than light-flowering (fuchsia) plants over a 3-year period in the field. Seeds from a subset of these maternal plants were counted, weighed, and germinated in a growth chamber. Photosystem efficiency, vegetative anthocyanin content, chlorophyll content, and biomass were measured on germinated seedlings after the germination census was completed. Dark-flowering maternal plants yielded seeds and seedlings with higher biomass than light-flowering ones. Seeds from dark-flowering maternal plants also germinated faster than those from light-flowering maternal plants and seedlings had higher vegetative anthocyanin content. The hereditary nature of anthocyanin content thus suggests that higher anthocyanin levels (both floral and vegetative) are potentially linked to measures of fitness such as increased seed weight, germination rate, and seedling biomass. These data suggest that UV protection provided by anthocyanins potentially increases the realized fitness of maternal plants, thereby influencing life history.  相似文献   

3.

Background

Recent studies suggested that the earthworm Lumbricus terrestris might act as a seedling predator by ingesting emerging seedlings, and individuals were observed damaging fresh leaves of various plant species in the field. To evaluate the significance of herbivore behavior of L. terrestris for plant and earthworm performance we exposed 23- to 33-days-old seedlings of six plant species to earthworms in two microcosm experiments. Plants belonged to the three functional groups grasses, non-leguminous herbs, and legumes. Leaf damage, leaf mortality, the number of leaves as well as mortality and growth of seedlings were followed over a period of up to 26 days. In a subset of replicates 0.1 g of soil surface litter of each of the six plant species was provided and consumption was estimated regularly to determine potential feeding preferences of earthworms.

Results

There was no difference in seedling growth, the number of live seedlings and dead leaves between treatments with or without worms. Fresh leaves were damaged eight times during the experiment, most likely by L. terrestris, with two direct observations of earthworms tearing off leaf parts. Another nine leaves were partly pulled into earthworm burrows. Lumbricus terrestris preferred to consume legume litter over litter of the other plant functional groups. Earthworms that consumed litter lost less weight than individuals that were provided with soil and live plants only, indicating that live plants are not a suitable substitute for litter in earthworm nutrition.

Conclusion

Our results demonstrate that L. terrestris damages live plants; however, this behavior occurs only rarely. Pulling live plants into earthworm burrows might induce microbial decomposition of leaves to make them suitable for later consumption. Herbivory on plants beyond the initial seedling stage may only play a minor role in earthworm nutrition and has limited potential to influence plant growth.  相似文献   

4.
5.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

6.
Up to 6,800 plant species endemic to oceanic islands are highly threatened with extinction. Although habitat destruction and fragmentation have greatly contributed to this, it is generally recognised that invasive alien species currently pose the single most important threat to island plants. Most studies exploring the role of novel interspecific interactions in driving declines of island plants, focus on threats mediated by animals, be it direct (e.g. browsing, seed predation, mutualism disruption) or indirect (e.g. extinction of seed dispersal or pollination mutualists). Relatively few studies have investigated the specific role of plant-plant interactions, particularly in-situ. We studied a threatened island endemic plant in rapid decline to evaluate the short (1–2 years) and medium-term (about 1–2 decades) influence of invasive alien plants (IAPs) on individuals and a variety of proxies of plant fitness. We compared mortality of traceable individuals that were recorded 12–20 years previously between habitats that are invaded with IAPs and habitats where IAPs are absent, or have been removed decades ago. We also carried out an in-situ manipulative experiment using 14 randomly chosen plants from around which IAPs were removed, paired with controls, at two sites. Canopy cover change before and after IAPs’ removal was quantified along with above ground biomass of IAPs removed for use as potential explanatory variables of change in proxies of plant fitness. Ten branches were randomly selected per plant and branch dynamics, leaves’ sizes and reproductive structure production were monitored quarterly for two years. Over the medium term, plant mortality was recorded only in presence of IAPs (X2 = 4.80, df = 1, p < 0.05). Over the short term, at the plant level, IAPs’ removal triggered overall weak to moderate improvements in the number of surviving and new branches as well as change in number of branches at one of the sites. At the leaf and branch levels, we found weak evidence for positive effects of IAPs removal on surviving leaves, flower buds produced and difference in leaf surface area per branch in one site. We therefore provide some experimental evidence of negative effects of alien plants on overall fitness of the threatened species in-situ presumably through competitive interactions. We posit that these effects were found to be weak to moderate due to the short experimental period over which they could develop (1–2 years). Overall, IAPs stand out as the most severe threat from among all documented threats to the species, for being the only one capable of causing mortality of adult plants. Results hence highlight island plants’ vulnerability to IAPs, and how their timely control would improve the survival and fitness of threatened plants, even at the scale of single individuals. Such a strategy could be more often employed. Our study stresses on prioritising IAPs’ control for rescuing long-lived threatened plants that grow in habitats invaded by alien plants (itself a very common situation on oceanic islands) before addressing other subtler, slower-acting threats, like disrupted pollination or seed dispersal mutualisms, florivory or seed predation.  相似文献   

7.
Current advancements in the study of the theoretical basis of species interactions are helping scientists understand the basic parameters governing the dynamics of the interactions between generalist herbivores and their target plants. In practice, however, both inter- and intra-specific interactions between plants (as well as between herbivores and plants) within multispecies systems that are under the influence of interrelated biotic and abiotic variables are difficult to predict. Here, we discuss our findings on the effect of simulated herbivory on Mimosa pigra L. leaves on seedling survivability. In Malaysia, M. pigra, a semi-aquatic invasive plant introduced from the South American region, is already creating an ecological problem, especially in wetland habitats. To better understand the impact of herbivores on the M. pigra population, a simulated experiment of the herbivory effect on Mimosa seedlings was conducted. This experiment combined two treatments of simulated herbivory on the leaves of established Mimosa seedlings, that is, a two-level intensity treatment (50 and 100 % defoliation) and a seven-level frequency treatment (one to seven defoliations). The data suggest that Mimosa is highly resilient against herbivory. This plant was able to compensate for repeated losses, thus suggesting that the introduction of herbivores in an effort to totally eradicate the Mimosa population is unlikely to be successful.  相似文献   

8.
Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.  相似文献   

9.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

10.
以百山祖自然保护区5 hm2永久样地150个幼苗监测站木本植物幼苗为研究对象,2008—2011年定期调查样方中幼苗的种类、数量、萌发、死亡等,探究亚热带中山常绿阔叶林幼苗种类组成、数量动态及其与生境的相关性。结果表明:1)百山祖样地在2008年至2011年出现的幼苗属于26科,40属,共53个物种,不同物种萌发时段有异;2)2009年样地幼苗存活比率为7.7%,2010年为-20.8%,2011年则是-0.3%,幼苗存活比率不高,种类和数量呈减少趋势;3)存活幼苗中有明显的优势物种,分别为光亮山矾(Symplocos lucida)、尖连蕊茶(Camellia cuspidata)、浙闽新木姜子(Neolitsea aurata var.undulatula)、尖叶菝葜(Smilax arisanensis)和短尾柯(Lithocarpus brevicaudatus),5个物种之和占幼苗总数比例50%;4)种子的萌发与生境有极显著的相关性,且与生境因子中水分关联最大;5)存活幼苗数与样站坡位、水分、落叶层厚度呈现显著相关性,水和光照是影响幼苗存活的主要因素。  相似文献   

11.
Juvenile-to-adult phase change is an indispensable event which guarantees a successful life cycle. Phase change has been studied in maize, Arabidopsis and rice, but is mostly unknown in other species. Soybean/Fabaceae plants undergo drastic changes of shoot architecture at the early vegetative stage including phyllotactic change and leaf type alteration from simple to compound. These characteristics make soybean/Fabaceae plants an interesting taxon for investigating vegetative phase change. Following the expansion of two cotyledons, two simple leaves simultaneously emerge in opposite phyllotaxy. The phyllotaxy of the third and fourth leaves is not fixed; both opposite and distichous phyllotaxis are observed within the same population. Leaves were compound from the third leaf. But the third leaf was rarely simple. Morphological and quantitative changes in early vegetative phase were recognized in leaf size, leaf shape, number of trichomes, stipule size and shape, and shoot meristem shape. Two microRNA genes, miR156 and miR172, are known to be associated with vegetative phase change. Examination of the expression level revealed that miR156 expression was high in the first two leaves and subsequently down-regulated, and that of miR172 showed the inverse expression pattern. These expression patterns coincided with the case of other species. Taken all data together, the first and second leaves represent juvenile phase, the fifth and upper leaves adult phase, and the third and fourth leaves intermediate stage. Further investigation of soybean phase change would give fruitful understandings on plant development.  相似文献   

12.
Field bean plants were subjected to flooding stress for 7 days, during two stages of development: at the vegetative phase (4-week-old seedlings) and at the generative phase (8-week-old plants). The height of plants, total area of leaves, the number of undamaged leaves, dry plant matter, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity, the maximum quantum yield of PS2 photochemistry (Fv/Fm ratio), the photosynthesis rate (P N) and stomatal conductance (g s) were determined. A strong reduction in stem elongation and leaf area as well as in dry matter production was observed as a result of flooding. The responses from vegetative plants were greater than in generative plants. Waterlogging decreased chlorophyll a and b in leaves, notably at the vegetative stage, and persisted after cessation of flooding. After flooding, photosynthesis was strongly reduced and positively correlated with decreased stomatal conductance. Damage to the photosynthetic apparatus resulted in a lower Fv/Fm especially in young seedlings. In vegetative plants Fv/Fm quickly returned to the control levels after the soil was drained. The results show that an excess of water in the soil limits growth and injures the photosynthetic apparatus in field beans, but that the extent of the injury is strongly age dependent.  相似文献   

13.
Echinacea purpurea (L.) is one of the important medicinal plant species. To obtain the tetraploid plants of Echinacea purpurea with improved medicinal qualities, the root tips of two true leaves seedlings were imbibed in 0.25 % (w/v) colchicine solution for 24, 48, 72, 96 and 168 h. The ploidy level of plants was determined by chromosome counting of root tip cells, and confirmed by flow cytometric analysis. Tetraploid induction occurred in seedlings treated for 24, 48 and 72 h at colchicine solution. The morphological, physiological, cytological, and phytochemical characteristics of diploid and colchicine-induced tetraploid plants were compared. Results indicated that tetraploid plants had considerable larger stomata, pollen grain, seed and flower. Moreover, chloroplast number in guard cells, amount of chlorophyll (a, b, and a + b), carotenoids as well as width and thickness of leaves were increased in tetraploids. However, stomata frequency, leaf index, plant height, and quantum efficiency of photosystem II in tetraploid were lower than diploid plants. High-performance liquid chromatography analysis showed that leaves of the tetraploid plants had more cichoric acid (45 %) and chlorogenic acid (71 %) than diploid plants. It was concluded that morphological and physiological characteristics can be used as useful parameters for preliminary screening of putative tetraploids in this species.  相似文献   

14.
  • 1 Seeds of Scirpus lacustris and Phragmites australis were germinated in early June, and twenty-four seedlings of each species were subsequently exposed to submerged conditions (eight seedlings at each of the water depths 0.2, 0.4 and 0.8m), in outdoor 500–1 tanks in southern Sweden. Weight and shoot length of the plants were measured in September.
  • 2 The Phragmites seedlings did not show any significant growth when submerged. The Scirpus seedlings, however, developed submerged leaves and exhibited considerable submerged growth. One Scirpus plant, in shallow water (0.2m), had developed an aerial shoot by September. Shoot length of the remaining (submerged) Scirpus plants was positively related to plant weight within water depth treatments, and was higher, in relation to plant weight, in deeper water. Mean weight in September of the submerged Scirpus plants decreased with increased water depth.
  • 3 In south Swedish lakes with a lowered water table, Scirpus often occupies large areas on the lakeward side of the reed belt, which is generally dominated by Phragmites. The differences between the two species, in performance of submerged seedlings, suggest that this zonation may be created through successful submerged seedling establishment of Scirpus on the lakeward side of Phragmites.
  相似文献   

15.
Adams CA  Rinne RW 《Plant physiology》1969,44(9):1241-1246
ATP sulfurylase activity varied greatly among different leaves on the soybean plant [Glycine max (L.) Meer.], and high levels of activity did not appear in the leaves until the seedlings were about 3 weeks old. In general, leaves from the top of the plant had a higher activity than leaves from the bottom of the plant. A much greater activity was found in soybean leaves than in soybean roots. The absence of sulfate in the nutrient solution resulted in higher enzyme activity in leaves from young plants and in lower activity in leaves from older plants. Over the growing season, however, ATP sulfurylase activity appeared to be related to sulfur content of the leaf. Several other plant species also had measurable levels of ATP sulfurylase.  相似文献   

16.
Ramonda nathaliae (Gesneriaceae) is a rare desiccation tolerant flowering plant species of the Northern Hemisphere. This, mainly calcicole, preglacial relict species is endemic in the Balkan Peninsula, where it has survived in its refugial habitats of gorges and mountain slopes. At present, only two localities within its narrow range are known where it thrives in hostile serpentine habitats, and the adverse serpentine environment is bound to present further challenge to the adaptive capacity of R. nathaliae. In general, the occurrence of a resurrection flowering plant on serpentine soil is exceptional and the soil-plant relation of R. nathaliae in those circumstances is described here for the first time. The aim of this study was (i) to analyze mineral elements composition in soil from both serpentine and limestone habitats of the species and to compare the way peculiarities of the substrates are reflected in roots and leaves of plants from the respective soils; (ii) to evaluate the effect of heavy metal overload on the habit of serpentine R. nathaliae individuals. Serpentine soil, characterized by high levels of phytotoxic heavy metals (Ni, Cr, Co, Mn), hosts plants showing elevated metal contents in their organs. Ramonda plants from serpentine populations are able to maintain balance of Ca to Mg favourable to Ca (2.0 in roots, 2.7 in leaves) despite a strongly unfavourable Ca/Mg ratio in the soil (0.09). The greatest difference in concentrations was observed for the Ni content in plant tissues: serpentine plants had 57 and 20 times more Ni in their roots and leaves than the plants from limestone. Aluminium was present in similar concentrations in both soils, and was highly accumulated in plant tissues of the plants from both substrates. Metal-specific metabolic activity is demonstrated in bioaccumulation indices of several essential minerals (Ca, Mg, Cu, Zn). A significantly higher metal content found in roots in relation to leaves might indicate the plant's ability to immobilize the metals within the root tissues. Mycorrhizal fungi colonize plant roots from both substrates and apparently are important in improving the supply of nutrients, but they could also take part in toxic metal immobilization. The price of adaptation to the hostile environment is evident in the habit of R. nathaliae plants growing on serpentine: reduced size of rosettes and leaves, as well as chlorotic and necrotic leaf tips and margins.  相似文献   

17.
Carbon partitioning in the leaves of Cucumis sativus L., a stachyose translocating plant, was influenced by the presence or absence of a single growing fruit on the plant. Fruit growth was very rapid with rates of fresh weight gain as high as 3.3 grams per hour. Fruit growth was highly competitive with vegetative growth as indicated by lower fresh weights of leaf blades, petioles, stem internodes and root systems on plants bearing a single growing fruit compared to plants not bearing a fruit. Carbon exchange rates, starch accumulation rates and carbon export rates were higher in leaves of plants bearing a fruit. Dry weight loss from leaves was higher at night from fruiting plants, and morning starch levels were consistently lower in leaves of fruiting than in leaves of vegetative plants indicating rapid starch mobilization at night from the leaves of fruiting plants. Galactinol, the galactosyl donor for stachyose biosynthesis, was present in the leaves of fruit-bearing plants at consistently lower concentration than in leaves of vegetative plants. Galactinol synthase, and sucrose phosphate synthase activities were not different on a per gram fresh weight basis in leaves from the two plant types; however, stachyose synthase activity was twice as high in leaves from fruiting plants. Thus, the lower galactinol pools may be associated with an activation of the terminal step in stachyose biosynthesis in leaves in response to the high sink demand of a growing cucumber fruit.  相似文献   

18.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

19.
Variation in Cd accumulation between Nicotiana species but not varieties has been observed in seedlings grown in solution culture with moderate-to-low levels of Cd. Nicotiana tabacum has been characterized as a leaf and root accumulator while Nicotiana rustica is shown to be primarily a root accumulator, having about half the leaf Cd per gram dry weight of N. tabacum. This phenotype is retained in the mature N. rustica plant. To characterize these two species which differ in their modes of Cd accumulation, tissue Cd distribution, partitioning of metal in soluble and insoluble fractions and the contribution of soluble Cd-binding proteins (peptides) to total plant Cd was assessed using mature solution cultured plants. Metal accumulation was highest in the most mature leaves and in young roots. The preponderance of young roots in N. rustica may, in part, account for low leaf/high root Cd accumulation in this species. While Cd-binding peptides appear to be a principal form of Cd in leaves and roots of seedlings and these also occur in mature leaves, Cd is equally distributed between soluble (about 80% as Cd-binding peptide) and uncharacterized insoluble forms in mature plant roots.  相似文献   

20.
The recovery capacity of meadows of the Mediterranean seagrass Posidonia oceanica (L.) Delile in an area affected by illegal trawling were assessed after protection by anti-trawling reefs. The differences in vegetative growth between two impacted and two undisturbed localities were tested using growth, shoot balance, aborted branches, and leaf and rhizome production of both plagiotropic and orthotropic rhizomes. The organic matter in sediments, silt clay fraction and light intensity incident on the bottom were also measured in order to evaluate the physical conditions. Environmental and plant variables were measured in three sites placed inside each locality. The vegetative growth was positive in both impacted and control meadows but growth rates were lower in impacted than in control meadows. Average growth, production and shoot balance were greater in plagiotropic rhizomes from undisturbed localities (40.7±1.75 vs. 28.4±1.34 mm/year, 1133±0.06 vs. 708±0.04 mg DW/shoot/year, 1.36±0.08 vs. 0.96±0.06 shoots/year, respectively). Significantly greater values were also found in undisturbed localities for orthotropic rhizomes in terms of shoot balance and rhizome production (0.07±0.01 vs. 0.01±0.003 shoots/shoot/year and 155 vs. 124 mg DW/shoot/year, respectively). Of the physical parameters measured, only light intensity differed significantly between impacted and undisturbed localities. This parameter was 15.5% to 67.6% lower in impacted localities than in undisturbed localities, and this is the factor that causes the retardation of vegetative growth. The results show that recovery of P. oceanica meadows is possible after eliminating the cause of the impact. However, the very low rates of vegetative growth may prolong the time to total recuperation to almost 100 years. Therefore, effective management of P. oceanica meadows should aim to prevent meadow loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号