首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Multiple mechanosensory organs form the subgenual organ complex in orthopteroid insects, located in the proximal tibia. In several Ensifera (Orthoptera), a small chordotonal organ, the so-called accessory organ, is the most posterior part of this sensory complex. In order to document the presence of this accessory organ among the Ensifera, the chordotonal sensilla and their innervation in the posterior tibia of two species of Jerusalem crickets (Stenopelmatidae: Stenopelmatus) is described. The sensory structures were stained by axonal tracing. Scolopidial sensilla occur in the posterior subgenual organ and the accessory organ in all leg pairs. The accessory organ contains 10–17 scolopidial sensilla. Both groups of sensilla are commonly spatially separated. However, in few cases neuronal fibres occurred between both organs. The two sensillum groups are considered as separate organs by the general spatial separation and innervation by different nerve branches. A functional role for mechanoreception is considered: since the accessory organ is located closely under the cuticle, sensilla may be suited to detect vibrations transferred over the leg's surface. This study extends the known taxa with an accessory organ, which occurs in several taxa of Ensifera. Comparative neuroanatomy thus suggests that the accessory organ may be conserved at least in Tettigoniidea.  相似文献   

2.
Mechanoreceptor organs occur in great diversity in insect legs. This study investigates sensory organs in the leg of atympanate cave crickets (Troglophilus neglectus KRAUSS, 1879) by neuronal tracing. Previously, the subgenual and the intermediate organs were recognised in the subgenual organ complex, lacking the tympanal membranes present for example in the tibial hearing organs of Gryllidae and Tettigoniidae. We document the presence of the accessory organ in T. neglectus. This scolopidial organ is located in the posterior tibia close to the subgenual organ and can be identified by position, innervation and orientation of the dendrites of sensory neurons. The main motor nerve in the leg innervates a part of the subgenual organ and the accessory organ. The dendrites of sensory neurons in the accessory organ are characteristically bent in proximo‐dorsal direction, while the subgenual organ dendrites run distally along the longitudinal axis of the leg. The accessory organ contains 6–10 scolopidial sensilla, and no differences in neuroanatomy occur between the three thoracic leg pairs. Hence, the subgenual organ complex in cave crickets is more complex than previously known. The wider taxonomic distribution of the accessory scolopidial organ among orthopteroid insects is inconsistent, indicating its repeated losses or convergent evolution.  相似文献   

3.
 In one of his classical studies on insect metamorphosis, Weismann compared the imaginal anlagen of the ancestral phantom midge, Chaoborus, with those of advanced brachycerans. We have expanded his findings on the relationships between larval and imaginal organs using electron microscopy and cobalt backfilling of the antenna and leg anlagen and the axonal trajectories of corresponding larval sensilla. We show that both primordia are confluent with the larval antennae and ”leg” sensilla (an ancestral Keilin organ), respectively. These fully developed larval organs represent the distal tips of the imaginal anlagen rather than separate cell clusters. The axons of the larval antenna and leg sensilla project across the corresponding anlagen to their target neuromeres within the central nervous system (CNS). Within the discs, nerves composed of these larval axons, developing afferent fibres and efferences ascending from the CNS are found. Both the structure of the primordia and the axonal trajectories thus relate the situation found in advanced brachycerans with that seen in more ancestral insects. In addition, the larval antennae, legs, wings and even the eyes possess very similar afferent pioneer trajectories supporting the idea that the described pattern is generally used in the ontogeny of sensory systems. Received: 30 June 1998 / Accepted: 27 September 1998  相似文献   

4.
Summary The development of the sensory neurons of the legs of the blowfly,Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.  相似文献   

5.
In this paper, we address the role of proneural genes in the formation of the dorsal organ in the Drosophila larva. This organ is an intricate compound comprising the multineuronal dome—the exclusive larval olfactory organ—and a number of mostly gustatory sensilla. We first determine the numbers of neurons and of the different types of accessory cells in the dorsal organ. From these data, we conclude that the dorsal organ derives from 14 sensory organ precursor cells. Seven of them appear to give rise to the dome, which therefore may be composed of seven fused sensilla, whereas the other precursors produce the remaining sensilla of the dorsal organ. By a loss-of-function approach, we then analyze the role of atonal, amos, and the achaete-scute complex (AS-C), which in the adult are the exclusive proneural genes required for chemosensory organ specification. We show that atonal and amos are necessary and sufficient in a complementary way for four and three of the sensory organ precursors of the dome, respectively. AS-C, on the other hand, is implicated in specifying the non-olfactory sensilla, partially in cooperation with atonal and/or amos. Similar links for these proneural genes with olfactory and gustatory function have been established in the adult fly. However, such conserved gene function is not trivial, given that adult and larval chemosensory organs are anatomically very different and that the development of adult olfactory sensilla involves cell recruitment, which is unlikely to play a role in dome formation. N. Grillenzoni and V. de Vaux contributed equally to this work.  相似文献   

6.
The sensilla located on the antennae and maxillary and labial palps of the larvae of 64 beetle species from 22 families were studied using electron microscopy. The larvae of beetles living in different habitats and having different trophic specializations possess a uniform structure of the sensory organs. They are composed of two groups of sensilla on the apical and subapical segments of the antennae, one apical group of sensilla on both maxillary and labial palps, and one or several digitiform sensilla on the lateral surface of the maxillary and, occasionally, labial palp. The external morphology of the sensory organs is adaptive and represents modifications of the initial type. Band-shaped sensilla or placoid sensilla, clearly different from the initial sensory organs, appear in some taxa as rare exceptions, while other groups display either partial reduction of the receptor organs (Gyrinidae) or reduction of the cuticular parts of the sensilla (Cantharidae).  相似文献   

7.
We describe here for the first time the development of mechanosensory organs in a chelicerate, the spider Cupiennius salei. It has been shown previously that the number of external sense organs increases with each moult. While stage 1 larvae do not have any external sensory structures, stage 2 larvae show a stereotyped pattern of touch sensitive ‘tactile hairs’ on their legs. We show that these mechanosensory organs develop during embryogenesis. In contrast to insects, groups of sensory precursors are recruited from the leg epithelium, rather than single sensory organ progenitors. The groups increase by proliferation, and neural cells delaminate from the cluster, which migrate away to occupy a position proximal to the accessory cells of the sense organ. In addition, we describe the development of putative internal sense organs, which do not differentiate until larval stage 2. We show by RNA interference that, similar to Drosophila, proneural genes are responsible for the formation and subtype identity of sensory organs. Furthermore, we demonstrate an additional function for proneural genes in the coordinated invagination and migration of neural cells during sensory organ formation in the spider.  相似文献   

8.
Summary The scorpionParuroctonus mesaensis locates prey by orienting to substrate vibrations produced by movements of the prey in sand. At the end of each walking leg of this scorpion there are two sense organs, the basitarsal compound slit sensillum and tarsal sensory hairs (Figs. 1, 3) that are excited by substrate vibrations conducted through sand. The slit sensilla appear to be most sensitive to surface (Rayleigh) waves while the tarsal sensory hairs respond best to compressional waves (Fig. 7). Both mechanoreceptors were activated by nearby disturbances of the substrate (Fig. 6) but only the slit sensilla responded to insects moving more than 15 cm away. Both receptors are highly sensitive to small amplitude (less than 10 Å) mechanical stimuli applied to the tarsus (Fig. 5).Behavioral studies of scorpions with ablated sense organs (Fig. 2) indicate that the basitarsal compound slit sensilla are necessary for determining vibration source direction.Abbreviation BCSS basitarsal compound slit sensillum (a) Supported by PHS Environmental Science and Regents Intern Fellowships (PB), and by intramural research funds from the University of California (RDF)  相似文献   

9.
Two different types of ears characterize the order of Orthopteran insects. The auditory organs of grasshoppers and locusts (Caelifera) are located in the first abdominal segment, those of bushcrickets and crickets (Ensifera) are found in the tibiae of the prothoracic legs. Using neuron-specific antibody labelling, we describe the ontogenetic origin of these two types of auditory organs, use comparative developmental studies to identify their segmental homologs, and on the basis of homology postulate their evolutionary origin. In grasshoppers the auditory receptors develop by epithelial invagination of the body wall ectoderm in the first abdominal segment. Subsequently, at least a part of the receptor cells undergo active migration and project their out-growing axons onto the next anterior intersegmental nerve. During this time the receptor cells and their axons express the cell-cell adhesion molecule, Fasciclin I. Similar cellular and molecular differentiation processes in neighboring segments give rise to serially homologous sensory organs, the pleural chordotonal organs in the pregenital abdominal segments, and the wing-hinge chordotonal organs in the thoracic segments. In more primitive earless grasshoppers pleural chordotonal organs are found in place of auditory organs in the first abdominal segment. In bushcrickets the auditory receptors develop in association with the prothoracic subgenual organ from a common developmental precursor. The auditory receptor neurons in these insects are homologous to identified mechanoreceptors in the meso- and metathoracic legs. The established intra- and interspecies homologies provide insight into the evolution of the auditory organs of Orthopterans.  相似文献   

10.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

11.
Summary Retrograde CoS-impregnation was used to trace and map the course of sensory nerves and the distribution and innervation of the various proprioceptor types in all leg segments of Cupiennius salei, a Ctenid spider.1. Sensory nerve branches. In both the tibia and femur, axons of all proprioceptor types ascend in just two lateral nerves which do not merge with the main leg nerve until they reach the next proximal joint region. In the short segments — coxa, trochanter, patella, and tarsus — axons of the internal joint receptors often run separately from those of the other sensilla. Axons of the large lyriform slit sense organ at the dorsal metatarsus and of the trichobothria join with only a few hair axons and form their own nerve branches (Figs. 1, 2, 3).2. Proprioceptors. Each of the seven leg joints is supplied with at least one set of the well-known internal joint receptors, slit sensilla (single slits and lyriform organs), and long cuticular hairs. In addition, we found previously unnoticed hair plates on both sides of the coxa, near the prosoma/coxa joint; they are deflected by the articular membrane during joint movements (Fig. 4).3. Sensory cells and innervation. CoS-impregnation shows that each slit of the slit sense organs — be it a single slit or several slits in a lyriform organ — is innervated by two bipolar sensory cells (Fig. 6). We also confirm previous reports of multiple innervation in the internal joint receptors and in the long joint hairs and cuticular spines.Most of the ascending nerve branches run just beneath the cuticle for at least a short distance (Fig. 5); hence they are convenient sites for electrophysiological recordings of sensory activity even in freely walking spiders.  相似文献   

12.
The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the Blumenthal neuropil) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.  相似文献   

13.
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well‐developed auditory sensilla, on average 32–35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems.  相似文献   

14.
The tarsal sensory complex of the red chicken mite Dermanyssus gallinae is situated on dorsal surface of each fore leg near the claw. It comprises 28 sensilla of 5 morphological types: 4 SW-UP (single-wall upper-pore) (gustatory organs), 8 SW-WP (single-wall wall-pore) (olfactory organs), 8 DW-WP (double-wall wall-pore) of two subtypes (thermo-chemoreceptory organs), 6 NP-TB (no pore--tubular body) (tactile organs), and 2 reduced sensilla. No sex or stage dimorphism was revealed. Morphological data point to the fact that tarsal sensory complex of the red chicken mite is mainly an organ detecting temperature changes and olfactory stimula.  相似文献   

15.
The main distant receptor organ of H. criceti, situated on the tarsus of each first leg, was studied by scanning and transmitting electron microscopy. The organ contains 6 types of sensilla, including 4 distant ones (two types of olfactory sensilla, differing in wall thickness, and 2 types of probable chemo-thermosensitive sensilla, possessing different double-walled hairs), and also taste organs of common structure and microchaeta. Cilia of all the sensilla contain 13 pairs of peripheral fibers. Comparative analysis of fine structure of distant sensilla in bloodsucking insects, ticks and mites made it possible to show, that blood-sucking gamasids and ticks possess similar number of homologous sensillar types, that formed on a common ground as the specific adaptation to blood-sucking.  相似文献   

16.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

17.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

18.
Anatomy of the sensory organs on the prominent body parts of the adult bed-bug Cimex hemipterus (Hemiptera: Cimicidae) and its central nervous system (CNS) was studied by light, transmission, or scanning electron microscopy. The distal tips of antenna and rostrum were found to have rich complements of sensilla. The antenna has both olfactory and gustatory sensilla. Olfactory sensilla project to the antennal lobe organized in the form of glomeruli, while the 2nd component, presumably from gustatory sensilla, projects to the suboesophageal ganglion. The ultrastructure of the sensory pegs on the rostrum of C. hemipterus does not resemble the chemosensilla of adult insects; rather they resemble the larval sensilla of Drosophila melanogaster in the maxillary organ. Earlier we believed this to be a gustatory organ. A few similar sensilla also occur on the antenna, indicating its multimodal role. Amongst the 3 types of sensory hairs located on legs, there are only a few gustatory hairs (7–10 hairs) on the tibia. The pointed and serrate mechanosensory hair types occur in abundance; the serrate type are prominently present on the lateral surface of the legs. On other parts of the body such as the thorax or abdomen, serrate hairs are most abundant. Both the distal segment of antenna and rostrum are invested by 2 nerves, where the axon counts of the 2 antennal nerves are 380 and 425, while each rostral nerve on average has 205 axons. Abundant clusters of microtubules were found in the brain, thoracio-abdominal ganglia, leg-nerves, and the space between muscles and cuticle. These conspicuous microtubule-clusters occur in interaxonal space, mainly glial cells, in the nervous system. In addition, the glial cells have osmiophilic junctions amongst themselves. A novel “hinge and joint” system, which controls the cross-section of the food canal and the salivary duct in an inversely related manner, was found in the rostrum of the bed-bug.  相似文献   

19.
The sensory organs on the tarsi of the antenniform first legs of the whip spider Admetus pumilio C. L. Koch (Amblypygi, Arachnida) were examined with the scanning and transmission electron microscope. At least four different types of hair sensilla were found: (1) thick-walled bristles, which have the characteristics of contact chemoreceptors (several chemoreceptive dendrites in the lumen plus two mechanoreceptors at the base); (2) short club sensilla, innervated by 4-6 neurons which terminate in a pore on the tip; they are possibly humidity receptors; (3) porous sensilla, which are either innervated by 20-25 neurons and have typical pore tubules, or they have 40-45 neurons but no pore tubules; both types are considered to be olfactory; (4) rod sensilla occur in clusters near segmental borders; they are innervated by only one large dendrite which branches inside the lumen. Other tarsal receptors are the claws, which correspond to contact chemoreceptors, and the pit organ which resembles the tarsal organ of spiders. Compared to other arthropod sensilla, the contact chemoreceptors are very similar to those of spiders, while the porous sensilla correspond structurally to olfactory receptors in insects; the club and rod sensilla seem to be typical for amblypygids.  相似文献   

20.
弦音器是昆虫类特有的一种机械感受器,亦称弦音感受器或剑梢感受器。它主要具有感知外界声压和体内肌肉运动的听觉功能,研究弦音器的机能结构对揭秘昆虫听觉的神经机制有重要的科学意义。本文从弦音器多样性和进化入手,重点综述了弦音器的微细结构、基因功能定位、声音感受分子机制及其声压增幅分子生物物理学原理,为昆虫听觉仿生学的研究提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号