首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
2.
During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury.  相似文献   

3.
4.
Elongation of very long-chain fatty acids (ELOVL) members were overexpressed in two preadipocyte cell lines, ELOVL2 and ELOVL3 in 3T3-L1 cells, and ELOVL1-3 in F442A cells. Cells overexpressing ELOVL2, whose preferred substrates are arachidonic acid (AA, C20:4n-6) and eicosapentaenoic acid (EPA, C20:5n-3), showed an enhanced triacylglycerol (TAG) synthesis and subsequent accumulation of lipid droplets. Incorporation of fatty acid (FA) but not of glucose into TAG was enhanced by ELOVL2-overexpression. Two lipogenic genes encoding diacylglycerol acyltransferase-2 (DGAT2) and fatty acid-binding protein-4 (FABP4, aP2) were induced in ELOVL2-overexpressing cells, whereas no such effect was seen on the fatty acid synthase (FAS) gene.  相似文献   

5.
6.
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.  相似文献   

7.
Mobilization of hepatic triacylglycerol stores provides substrates for mitochondrial β-oxidation and assembly of VLDLs; however, the identity of lipolytic enzymes involved in the regulation of this process remains largely unknown. Arylacetamide deacetylase (AADA) shares homology with hormone-sensitive lipase and therefore could potentially participate in hepatic lipid metabolism, including the regulation of hepatic triacylglycerol levels. We have established McArdle-RH7777 (rat hepatoma) cell lines stably expressing mouse AADA cDNA and performed metabolic labeling as well as lipid mass analyses. Expression of AADA cDNA in McArdle-RH7777 cells significantly reduced intracellular triacylglycerol levels and apolipoprotein B secretion and increased fatty acid oxidation.  相似文献   

8.
Non-alcoholic Fatty Liver Disease (NAFLD) or pathological hepatic lipid overload, is considered to affect obese individuals. However, NAFLD in lean individuals is prevalent, especially in South Asian population. The pathophysiology of lean NAFLD is not well understood and most animal models of NAFLD use the high-fat diet paradigm. To bridge this gap, we have developed a diet-independent model of NAFLD in zebrafish. We have previously shown that chronic systemic inflammation causes metabolic changes in the liver leading to hepatic fat accumulation in an IL6 overexpressing (IL6-OE) zebrafish model. In the present study, we compared the hepatic lipid composition of adult IL6-OE zebrafish to the controls and found an accumulation of saturated triacylglycerols and a reduction in the unsaturated triacylglycerol species reminiscent of NAFLD patients. Zebrafish is an ideal system for chemical genetic screens. We tested whether the hepatic lipid accumulation in the IL6-OE is responsive to chemical treatment. We found that PPAR-gamma agonist Rosiglitazone, known to reduce lipid overload in the high-fat diet models of NAFLD, could ameliorate the fatty liver phenotype of the IL6-OE fish. Rosiglitazone treatment reduced the accumulation of saturated lipids and showed a concomitant increase in unsaturated TAG species in our inflammation-induced NAFLD model. Our observations suggest that the IL6-OE model can be effective for small molecule screening to identify compounds that can reverse hepatic lipid accumulation, especially relevant to lean NAFLD.  相似文献   

9.
Δ-6 desaturase (D6D) is a key enzyme in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA). Evidence suggests that reduced D6D activity not only disrupts LC-PUFA production, but also impacts whole body lipid handling and body weight; however, the mechanisms remain largely unexplored. Therefore, we investigated the effect of D6D inhibition on the regulation of lipid accumulation in 3T3-L1 adipocytes with and without changes in n-3 PUFA content. 3T3-L1 cells were treated with a D6D inhibitor (SC-26196) in the presence or absence of α-linolenic acid (ALA) throughout differentiation. We found that D6D inhibition blocked the conversion of ALA to eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPAn-3) when ALA was supplemented, while no changes in n-3 PUFA content were observed in cells treated with the D6D inhibitor alone. D6D inhibited cells had reduced triacylglycerol (TAG) accumulation despite an EPA/DPA deficiency. In addition, analyses of cellular protein markers, as well as non-esterified fatty acids and glycerol release in medium, suggested an increase in lipolysis and a decrease in fatty acid re-esterification in D6D-inhibited cells, independent of n-3 PUFA changes. To provide further evidence, we treated cells with the D6D inhibitor in the presence or absence of EPA and compared them with ALA-treated cells. Although EPA further reduced TAG content, the reduced markers of fatty acid re-esterification were not affected by ALA or EPA. Collectively, this study provides new insight showing that D6D inhibition reduces TAG accumulation and fatty acid re-esterification in adipocytes independent of changes in n-3 PUFA cellular content.  相似文献   

10.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   

11.
The freshwater green microalga Parietochloris incisa is the richest known plant source of the polyunsaturated fatty acid (PUFA), arachidonic acid (20:4omega6, AA). While many microalgae accumulate triacylglycerols (TAG) in the stationary phase or under certain stress conditions, these TAG are generally made of saturated and monounsaturated fatty acids. In contrast, most cellular AA of P. incisa resides in TAG. Using various inhibitors, we have attempted to find out if the induction of the biosynthesis of AA and the accumulation of TAG are codependent. Salicylhydroxamic acid (SHAM) affected a growth reduction that was accompanied with an increase in the content of TAG from 3.0 to 6.2% of dry weight. The proportion of 18:1 increased sharply in all lipids while that of 18:2 and its down stream products, 18:3omega6, 20:3omega6 and AA, decreased, indicating an inhibition of the Delta12 desaturation of 18:1. Treatment with the herbicide SAN 9785 significantly reduced the proportion of TAG. However, the proportion of AA in TAG, as well as in the polar lipids, increased. These findings indicate that while there is a preference for AA as a building block of TAG, the latter can be produced using other fatty acids, when the production of AA is inhibited. On the other hand, inhibiting TAG construction did not affect the production of AA. In order to elucidate the possible role of AA in TAG we have labeled exponential cultures of P. incisa kept at 25 degrees C with [1-14C]arachidonic acid and cultivated the cultures for another 12 h at 25, 12 or 4 degrees C. At the lower temperatures, labeled AA was transferred from TAG to polar lipids, indicating that TAG of P. incisa may have a role as a depot of AA that can be incorporated into the membranes, enabling the organism to quickly respond to low temperature-induced stress.  相似文献   

12.
Although the crucial role of lipid droplets (LDs), mitochondria (MT) and their interactions in regulating lipid metabolism are well accepted, the mechanism of LDs-MT interactions in high fat diet (HFD)-induced changes of lipid metabolism remains unknown. Thus, this study was conducted to determine the mechanism of LDs-MT interactions in HFD-induced changes of lipid accumulation. We found that HFD not only up-regulated the expression of key proteins linked with TAG biosynthesis, but also increased the expression of proteins involved in lipolysis and fatty acid (FA) oxidation in LDs, including Rab32 (the only Rab protein associated with the MT). FA-induced LDs accumulation coincided with increased mitochondrial biogenesis, suggesting the potential LDs-MT interaction in hepatocytes after FA incubation. Also, FA incubation markedly increased the localization of Rab32 into LDs and MT, which confirmed the LDs-MT interaction and indicated the involvement of Rab32 in LDs-MT interaction following FA incubation. Inhibitors of Creb-Pgc1α pathway significantly blocked the localization of Rab32 into LDs and MT, and significantly reduced FA-induced LDs lipolysis by targeting Atgl and Plin5. Meanwhile, the FA-enhanced LDs accumulation, and mitochondrial biogenesis, fusion and oxidation were also significantly repressed. These indicated the regulatory role of Creb-Pgc1α in Rab32-mediated LDs-MT interactions and lipolysis after FA incubation. Taken together, these results revealed a novel mechanism of HFD- and FA-induced LDs-MT interactions in regulating hepatic LDs lipolysis, which provided new insight into the crosstalk between LDs-MT interaction and their potential role in HFD-induced hepatic steatosis.  相似文献   

13.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

14.
Liver fatty acid-binding protein (L-Fabp) is an abundant cytosolic lipid-binding protein with broad substrate specificity, expressed in mammalian enterocytes and hepatocytes. We have generated mice with a targeted deletion of the endogenous L-Fabp gene and have characterized their response to alterations in hepatic fatty acid flux following prolonged fasting. Chow-fed L-Fabp-/- mice were indistinguishable from wild-type littermates with regard to growth, serum and tissue lipid profiles, and fatty acid distribution within hepatic complex lipid species. In response to 48-h fasting, however, wild-type mice demonstrated a approximately 10-fold increase in hepatic triglyceride content while L-Fabp-/- mice demonstrated only a 2-fold increase. Hepatic VLDL secretion was decreased in L-Fabp-/- mice suggesting that the decreased accumulation of hepatic triglyceride was not the result of increased secretion. Fatty acid oxidation, as inferred from serum beta-hydroxybutyrate levels, was increased in response to fasting, although the increase in L-Fabp-/- mice was significantly reduced in comparison to wild-type controls, despite comparable induction of PPAR alpha target genes. Studies in primary hepatocytes revealed indistinguishable initial rates of oleate uptake, but longer intervals revealed reduced rates of uptake in fasted L-Fabp-/- mice. Oleate incorporation into cellular triglyceride and diacylglycerol was reduced in L-Fabp-/- mice although incorporation into phospholipid and cholesterol ester was no different than wild-type controls. These data point to an inducible defect in fatty acid utilization in fasted L-Fabp-/- mice that involves targeting of substrate for use in triglyceride metabolism.  相似文献   

15.
In rodents, forced activation of hepatic peroxisome proliferator-activated receptor α (PPARα) by administration of exogenous PPARα activators during lactation leads to a reduction of milk triacylglycerol (TAG) production. Herein, we investigated whether a negative energy balance (NEB) induced by feed restriction (about 18% lower feed and energy intake) during lactation by increasing the release of fatty acids, which act as PPARα agonists, causes a disruption of hepatic lipid metabolism and thereby impairs milk TAG production in sows. Nutrient and energy content of the milk on day 20 of lactation and gains of litters during the first 14 d and the whole 21 d suckling period did not differ between Control and feed-restricted sows. The mRNA concentrations of several sterol regulatory element-binding protein target genes involved in lipid synthesis in the liver and the plasma concentration of TAG were reduced in the feed-restricted sows, whereas the mRNA concentrations of PPARα target genes involved in fatty acid oxidation in liver and skeletal muscle were not different between groups. In conclusion, it was shown that an NEB during lactation does not adversely affect milk composition and gains of litters, despite inhibiting hepatic expression of genes involved in lipid synthesis and reducing plasma TAG concentration. The finding that PPARα target genes involved in fatty acid utilisation in liver and muscle of sows are not induced by the NEB during lactation may explain that fatty acid availability in the mammary gland is sufficient to maintain milk TAG production and to allow normal litter gain.  相似文献   

16.
The present study highlights the important association between lipid alterations and differentiation/apoptotic responses in human colon differentiating (FHC) and nondifferentiating (HCT-116) cell lines after their treatment with short-chain fatty acid sodium butyrate (NaBt), polyunsaturated fatty acids (PUFAs), and/or their combination. Our data from GC/MS and LC/MS/MS showed an effective incorporation and metabolization of the supplemented arachidonic acid (AA) or docosahexaenoic acid (DHA), resulting in an enhanced content of the respective PUFA in individual phospholipid (PL) classes and an altered composition of the whole cellular fatty acid spectrum in both FHC and HCT-116 cells. We provide novel evidence that NaBt combined with PUFAs additionally modulated AA and DHA cellular levels and caused their shift from triacylglycerol to PL fractions. NaBt increased, while AA, DHA and their combination with NaBt decreased endogenous fatty acid synthesis in FHC but not in HCT-116 cells. Fatty acid treatment also altered membrane lipid structure, augmented cytoplasmic lipid droplet accumulation, reactive oxygen species (ROS) production and dissipation of the mitochondrial membrane potential. All these parameters were significantly enhanced by combined NaBt/PUFA treatment, but only in FHC cells was this accompanied by highly increased apoptosis and suppressed differentiation. Moreover, the most significant changes of ROS production, differentiation and apoptosis among the parameters studied, the highest effects of combined NaBt/PUFA treatment and a lower sensitivity of HCT-116 cells were confirmed using two-way ANOVA. Our results demonstrate an important role of fatty acid-induced lipid alterations in the different apoptotic/differentiation response of colon cells with various carcinogenic potential.  相似文献   

17.
The impact of type 2 diabetes on the ability of muscle to accumulate and dispose of fatty acids and triglycerides was evaluated in cultured muscle cells from nondiabetic (ND) and type 2 diabetic (T2D) subjects. In the presence of 5 microM palmitate, T2D muscle cells accumulated less lipid than ND cells (11.5 +/- 1.2 vs. 15.1 +/- 1.4 nmol/mg protein, P < 0.05). Chronic treatment (4 days) with the peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist troglitazone increased palmitate accumulation, normalizing uptake in T2D cells. There were no significant differences between groups with regard to the relative incorporation of palmitate into neutral lipid species. This distribution was also unaffected by troglitazone treatment. beta-Oxidation of both long-chain (palmitate) and medium-chain (octanoate) fatty acids in T2D muscle cells was reduced by approximately 40% compared with ND cells. Palmitate oxidation occurred primarily in mitochondrial ( approximately 40-50% of total) and peroxisomal (20-30%) compartments. The diabetes-related defect in palmitate oxidation was localized to the mitochondrial component. Both palmitate and octanoate oxidation were stimulated by a series of thiazolidinediones. Oxidation in T2D muscle cells was normalized after treatment. Troglitazone increased the mitochondrial component of palmitate oxidation. Skeletal muscle cells from T2D subjects express defects in free fatty acid metabolism that are retained in vitro, most importantly defects in beta-oxidation. These defects can be corrected by treatment with PPARgamma agonists. Augmentation of fatty acid disposal in skeletal muscle, potentially reducing intramyocellular triglyceride content, may represent one mechanism for the lipid-lowering and insulin-sensitizing effects of thiazolidinediones.  相似文献   

18.
Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague–Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD.  相似文献   

19.
The aim of the study was to investigate whether the protein and folic acid content of the maternal diet and the sex of the offspring alter the polyunsaturated fatty acid content of hepatic phospholipids and triacylglycerol (TAG). Pregnant rats were fed diets containing 18% or 9% protein with either 1 or 5mg/kg folic acid. Maternal diet did not alter hepatic lipid composition in the adult offspring. Data from each maternal dietary group were combined and reanalysed. The proportion of 18:0, 20:4n-6 and 22:6n-3 in liver phospholipids was higher in females than in males, while hepatic TAG composition did not differ between sexes. Delta5 Desaturase expression was higher in females than in males. Neither Delta5 nor Delta6 desaturase expression was related to polyunsaturated fatty acid concentrations. These results suggest that sex differences in liver phospholipid fatty acid composition may reflect primary differences in the specificity of phospholipid biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号