首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

2.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

3.
Although some plant responses to salinity have been characterized, the precise mechanisms by which salt stress damages plants are still poorly understood especially in woody plants. In the present study, the physiological and biochemical responses of Broussonetia papyrifera, a tree species of the family, Moraceae, to salinity were studied. In vitro-produced plantlets of B. papyrifera were treated with varying levels of NaCl (0, 50, 100 and 150 mM) in hydroponic culture. Changes in ion contents, accumulation of H2O2, as well as the activities and isoform profiles of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the leaves, stems and roots were investigated. Under salt stress, there was higher Na+ accumulation in roots than in stems and leaves, and Ca2 +, Mg2 + and P3 + content, as well as K+/Na+ ratio were affected. NaCl treatment induced an increase in H2O2 contents in the tissues of B. papyrifera. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased H2O2 and salinity appeared to be associated with differential regulation of distinct SOD and POD isoenzymes. Moreover, SDS-PAGE analysis of total proteins extracted from leaves and roots of control and NaCl-treated plantlets revealed that in the leaves salt stress was associated with decrease or disappearance of some protein bands, and induction of a new protein band after exposure to 100 and 150 mM NaCl. In contrast, NaCl stress had little effect on the protein pattern in the roots. In summary, these findings may provide insight into the mechanisms of the response of woody plants to salt stress.  相似文献   

4.
5.
The changes in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POX: EC 1.11.1.7), ascorbate peroxidase (APOX: EC 1.11.1.11) and glutathione reductase (GR: EC 1.6.4.2), free proline content, and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) in roots of two rice cultivars (cvs.) differing in salt tolerance were investigated. Plants were subjected to three salt treatments, 0, 60, and 120 mol m−3 NaCl for 7 days. The results showed that activated oxygen species may play a role in cellular toxicity of NaCl and indicated differences in activation of antioxidant defense systems between the two cvs. The roots of both cultivars showed a decrease in GR activity with increase in salinity. CAT and APOX activities increased with increasing salt stress in roots of salt-tolerant cultivar Pokkali but decreased and showed no change, respectively, in roots of IR-28 cultivar. POX activity decreased with increasing NaCl concentrations in salt-tolerant Pokkali but increased in IR-28. SOD activity showed no change in roots of both cultivars under increasing salinity. MDA level in the roots increased under salt stress in sensitive IR-28 but showed no change in Pokkali. IR-28 produced higher amount of proline under salt stress than in Pokkali. Increasing NaCl concentration caused a reduction in root fresh weight of Pokkali and root dry weight of IR-28. The results indicate that improved tolerance to salt stress in root tissues of rice plants may be accomplished by increased capacity of antioxidative system.  相似文献   

6.
In the present study, we investigated time course changes of water status including relative water content (RWC), leaf osmotic potential (ΨΠ), stomatal conductance (gs), proline (Pro), chlorophyll fluorescence (Fv/Fm) and total chlorophyll content in the Arabidopsis thaliana under PEG-induced drought stress after exogenous ABA treatment. To a better explanation for the role of ABA in the water status of A. thaliana to drought stress, wild-type (Columbia) and ABA-deficient mutant (aba2) of A. thaliana were used in the present study. Moreover, three weeks old Arabidopsis seedlings were applied exogenously with 50 μM ABA and exposed to drought stress induced by 40% PEG8000 (−0.73 MPa) for 6 h, 12 h and 24 h (hours). Our findings indicate that RWC of wild-type and aba2 started to decrease in the first 12 h and 6 h of PEG-induced drought stress, respectively. However, exogenous treatment of 50 μM ABA increased their RWC under drought stress. On the other hand, while ΨΠ of both genotypes started to decrease in the first 6 h of drought stress, these declines in ΨΠ were prevented by ABA treatment under stress throughout the experiment; it was more pronounced in aba2 at 24 h. While the highest increase in gs was obtained in aba2 after 24 h stress, ABA-induced highest decrease in gs was obtained in the same genotype during 12 h, as compared to PEG-treated group alone. On the other hand, Pro content increased in all treatment groups of ABA-deficient mutant aba2 at 12 h and 24 h. However, Pro content in ABA + PEG treated aba2 plants was higher than in PEG- and ABA-treated plants alone at the end of the 24 h. Drought stress decreased Fv/Fm and total chlorophyll contents of both genotypes while 50 μM ABA alleviated these reductions during drought stress, as compared to PEG stressed plants. On the other hand, 50 μM ABA treatment alone did not create any remarkable effect on Fv/Fm and total chlorophyll contents.These findings indicate that exogenous ABA showed an alleviative effect against damage of drought stress on relative water content, osmotic potential, stomatal conductance, proline, chlorophyll fluorescence and total chlorophyll content of both genotypes during 24 h of drought stress treatment.  相似文献   

7.
8.
Nitric oxide (NO), an endogenous signaling molecule in plants and animals, mediates responses to abiotic and biotic stresses. This study was conducted in nutrient solution to investigate the effects of exogenous sodium nitroprusside (SNP), an NO donor, on plant growth and free polyamine content in cucumber leaves and roots under NaCl stress. The results showed that 100 μM SNP in solution significantly improved the growth of cucumber seedlings under NaCl stress for 8 days, as indicated by increased, plant height, stem thickness, fresh weight and increased dry matter accumulation. Further analysis demonstrated that the content of free polyamines and the activity of polyamine oxidase (PAO) in cucumber seedling leaves and roots initially increased dramatically under NaCl stress, although they decreased over a longer period of stress. Throughout the treatment period, the value of (spermine + spermidine)/putrescine [(Spd + Spm)/Put] also decreased under NaCl stress compared to the control. In contrast, the application of 100 μM SNP in the nutrient solution decreased the content of free Put, Spd, total free polyamines and PAO activity under NaCl stress. It also caused an increase in the content of Spm and the value of (Spd + Spm)/Put, adjusted the ratio of three kinds of free polyamines (Put, Spd, Spm) in cucumber seedlings. The high (Spd + Spm)/Put value and the accumulation of Spm were beneficial to improving the salt tolerance of plants. Therefore, NO alleviated the damage to cucumber seedlings caused by salt stress. NO enhanced the tolerance of cucumber seedlings to NaCl stress by regulating the content and proportions of the different types of free polyamines.  相似文献   

9.
The effects of magnesium (Mg) supplementation on the growth performance, oxidative damage, DNA damage, and photosynthetic pigment synthesis, as well as on the activity level of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase (Rubisco), and antioxidant enzymes were studied in Vicia faba L. plants exposed to heat stress (HS) and non-heat-stress (non-HS) conditions. Seeds were grown in pots containing a 1:1 mixture of sand and peat, with Mg treatments. The treatments consisted of (i) 0 Mg and non-HS (ambient temperature; control); (ii) 50 mM Mg; (iii) HS (38 °C); and (iv) 50 mM Mg and HS (38 °C). HS was imposed by placing potted plants in an incubator at 38 °C for 48 h. Growth attributes, total chlorophyll (Total Chl), and CA, and Rubisco activity decreased in plants subjected to HS, whereas accumulation of organic solutes [proline (Pro) and glycine betaine (GB)]; superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity; DNA damage; electrolyte leakage (EL); and malondialdehyde (MDA) and hydrogen peroxide (H2O2) content all increased. Application of Mg, however, significantly enhanced further proline (Pro), glycinebetaine (GB), SOD, POD, and CAT activity, and decreased DNA damage, EL, and MDA and H2O2 concentrations. These results suggest that adequate supply of Mg is not only essential for plant growth and development, but also improves plant tolerance to HS by suppressing cellular damage induced by reactive oxygen species through the enhancement of the accumulation of Pro and GB, and the actions of antioxidant enzymes.  相似文献   

10.
11.
《Aquatic Botany》2005,82(4):239-249
The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as photosynthetic pigment contents and free malondialdehyde (MDA), were determined in senescent batch cultures of Tetraselmis gracilis (Kylin) Butcher, under a cyclic light regime. A 2.6-fold increase in SOD activity (from 53 to 137 U mg−1 protein) was observed in the light phase, contrasting with a 9-fold increase in CAT (from 1 to 9 μmol H2O2 min−1 mg−1 protein) and a 1.7-fold increase in APX (from 3 to 5 μmol ascorbate min−1 mg−1 protein) activities, both enzymes peaking in the dark phase. The β-carotene and lycopene content did not vary significantly with the light–dark cycle. The Chl a, Chl b, lutein, zeaxanthin, violaxanthin and neoxanthin pigments exhibited the highest values in the first half (3–6 h) of the light phase, followed by a declining trend and a plateau or a slight increase 3 h from the beginning of the dark phase onwards. The highest values for prasinoxanthin were observed in the second half of the dark phase and the first half of the light phase. None of the pigments displayed any discernible cyclic trend. The possibility of the xanthophyll cycle occurring during senescence is discussed in light of the high value (∼0.9) obtained for the zeaxanthin/(zeaxanthin + violaxanthin) ratio. The free MDA content was enhanced during the experimental period, which may be an indicator of oxidative stress in aging cell cultures. Our results indicated the occurrence of an imbalance between the production of reactive oxygen species and the antioxidant defense in stationary T. gracilis cells.  相似文献   

12.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

13.
The effect of different plant growth regulators (PGR) and elicitor treatments on the alkaloid profile variation of Catharanthus roseus was investigated in the present study. The PGR used were paclobutrazol (PBZ), gibberellic acid (GA3) and Pseudomonas fluorescens elicitors (PF Elicitors). The estimated alkaloids were ajmalicine, catharanthine, tabersonine, serpentine and vindoline. In roots, the ajmalicine content increased significantly under all the treatments on all sampling days. In roots, the catharanthine contents increased with the age in control and growth regulator treatments, but the increase was not prominent and significant in PGR treatments when compared to controls. The serpentine contents of the plant increased with PGR treatments, but the increase was more prominent in PBZ treatments when compared to other treatments. The increase was in the order PBZ > PF Elicitors > GA3. C. roseus never showed any significant increase in tabersonine contents in the roots under GA3 treatments, but it increased significantly under PBZ and PF Elicitors when compared to control plants. The root vindoline contents increased with PBZ and PF Elicitors treatments but the decreased under GA3 treatments when compared to control plants. Our results have good significance, as these increases the secondary metabolites of this traditional medicinal plant.  相似文献   

14.
《Cryobiology》2015,71(3):246-252
Trehalose is widely used for cryopreservation of various cells and tissues. Until now, the effect of trehalose supplementation on cell viability and antioxidant enzyme activity in frozen-thawed bovine calf testicular tissue remains unexplored. The objective of the present study was to compare the effect of varying doses of trehalose in cryomedia on cell viability and key antioxidant enzymes activities in frozen-thawed bovine calf testicular tissue. Bovine calf testicular tissue samples were collected and cryopreserved in the cryomedias containing varying doses (0, 5, 10, 15, 20 and 25%; v/v) of trehalose, respectively. Cell viability, total antioxidant capacity (T-AOC) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione (GSH) content and malondialdehyde (MDA) content were measured and analyzed. The results showed that cell viability, T-AOC activity, SOD activity, CAT activity and GSH content of frozen-thawed bovine calf testicular tissue was decreased compared with that of fresh group (P < 0.05). MDA content in frozen-thawed bovine calf testicular tissue was significantly increased compared with that of fresh group (P < 0.05). The cryomedia added 15% trehalose exhibited the greatest percentage of cell viability and antioxidant enzyme activity (SOD and CAT) among frozen-thawed groups (P < 0.05). Meanwhile, GSH content was the lowest among frozen-thawed groups (P < 0.05). However, there were no significance differences in MDA content among the groups added 10, 15 and 20% trehalose (P > 0.05). In conclusion, the cryomedia added 15% trehalose reduced the oxidative stress and improved the cryoprotective effect of bovine calf testicular tissue. Further studies are required to obtain more concrete results on the determination of antioxidant capacity of trehalose in frozen-thawed bovine calf testicular tissue.  相似文献   

15.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

16.
Antioxidant properties of many medicinal plants have been widely recognized and some of them have been commercially exploited. Plant derived antioxidants play a very important role in alleviating problems related to oxidative stress. The present study was aimed at assessing the antioxidant property of costunolide and eremanthin isolated from a medicinal plant Costus speciosus (Koen ex. Retz) Sm. rhizome. Experimental diabetes was induced by a single dose of STZ (60 mg/kg, i.p.) injection. The oxidative stress was measured by tissue thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in brain, liver, heart, kidney and pancreas. An increase in TBARS level, a significant reduction in GSH content along with decreased enzymatic activities of SOD, CAT, and GPx were seen in untreated diabetic rats. Administration of either costunolide (20 mg/kg day) or eremanthin (20 mg/kg day) for 60 days caused a significant reduction in TBARS level and a significant increase in GSH content along with increased enzymatic activities of SOD, CAT and GPx in the treated rats when compared to untreated diabetic rats. Acute toxicity test revealed the non-toxic nature of the compounds. The results indicated for the first time the protective effect of costunolide and eremanthin from oxidative stress, thus opening the way for their use in medication.  相似文献   

17.
Drought is a key abiotic stress that negatively affects growth and development as well as symbiotic nitrogen fixation in alfalfa (Medicago sativa L.). To understand whether nodulation would affect drought stress response in alfalfa, we analyzed the lipid peroxidation, activities of antioxidant enzymes including superoxide dismutase (SOD), and catalase (CAT), contents of superoxide anion radical, non-enzymatic antioxidants including reduced glutathione (GSH) and proline, total protein, and soluble sugar in dehydration-stressed alfalfa. Three-month-old alfalfa plants without nodule, with active nodules, or with inactive nodules were dehydrated for 0, 1, 2, 4, 6, 8, and 10 h. We found that roots and leaves from plants with nodules, especially with active nodules, showed less lipid peroxidation which was associated with higher CAT activities and higher levels of GSH. Roots and leaves with active nodules also accumulated less free proline and soluble sugar compared to plants without nodules, suggesting that proline and soluble sugar may have a limited role in osmotic adjustment in these plants. The results suggested that active nodules may have a positive effect on drought stress tolerance in alfalfa.  相似文献   

18.
A new instrument (M-PEA), which measures simultaneously kinetics of prompt fluorescence (PF), delayed fluorescence (DF) and modulated light reflection at 820 nm (MR), was used to screen dark-adapted leaves of the resurrection plant Haberlea rhodopensis during their progressive drying, down to 1% relative water content (RWC), and after their re-watering. This is the first investigation using M-PEA, which employs alternations of actinic light (627-nm peak, 5000 μmol photons m? 2 s? 1) and dark intervals, where PF-MR and DF kinetics are respectively recorded, with the added advantages: (a) all kinetics are recorded with high time resolution (starting from 0.01 ms), (b) the dark intervals' duration can be as short as 0.1 ms, (c) actinic illumination can be interrupted at different times during the PF transient (recorded up to 300 s), with the earliest interruption at 0.3 ms. Analysis of the simultaneous measurements at different water-content-states of H. rhodopensis leaves allowed the comparison and correlation of complementary information on the structure/function of the photosynthetic machinery, which is not destroyed but only inactivated (reversibly) at different degrees; the comparison and correlation helped also to test current interpretations of each signal and advance their understanding. Our results suggest that the desiccation tolerance of the photosynthetic machinery in H. rhodopensis is mainly based on mechanism(s) that lead to inactivation of photosystem II reaction centres (transformation to heat sinks), triggered already by a small RWC decrease.  相似文献   

19.
ProjectRecurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder.ProcedurePatients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction.Results and conclusionsOxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se–CAT, Se–GPx, and Cu–MDA parameters, but negative correlations between Se–Cu, Se–MDA, Cu–CAT, Cu–SOD1 and Cu–GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients.  相似文献   

20.
Water status and diffusion transport were studied in the roots of yellow lupine (Lupinus luteus L., cv. Juno) treated for 48 h with two selected concentrations of Pb(NO3)2: 150 mg l−1, which inhibited root growth by about 50% (medium stress intensity), as well as 350 mg l−1, which almost entirely suppressed root elongation (severe stress intensity). Relative water content (RWC), which characterizes the degree of root water saturation, slightly increased at the lower lead concentration and remained unchanged at the higher lead dose. Ultrastructure analyses under a transmission electron microscope revealed that plasmolysis was not evoked by lead in the apical part of the meristem. Moreover, direct observation of meristem cells using Nomarsky optics indicated enhanced vacuolization in the presence of both lead concentrations. These data suggest that the water status of the roots was not affected by the metal. Due to the fact that proline is involved in the maintenance of turgor in the cells, the metabolism of this amino acid was investigated. In the roots, the activity of enzymes involved in proline synthesis, such as pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT), increased at 150 mg l−1 Pb2+; nevertheless, proline content was diminished at the lower lead concentration. This effect is likely the result of proline degradation by proline dehydrogenase (PDH), since the activity of this enzyme increased at the lower lead dose. On the other hand, in the presence of 350 mg l−1 Pb2+, a low level of proline was correlated with a decrease in the activity of P5CS and OAT, as well as unchanged PDH activity in lupine roots. These data may imply that enzymatic synthesis of proline was strongly damaged by the metal ions. The low level of proline in both experimental variants suggests that proline accumulation is inessential to maintaining the osmotic uptake of water into root cells. NMR spectroscopy showed that exposition of lupine seedlings to lead caused a deceleration in water transport in the roots due to a reduction in the water transfer rate across the membranes (transmembrane transfer) and vacuoles continuum, as well as water diffusion along the root apoplast. Fluorescence staining and immunogold labeling showed the presence of callose strands in cell walls and/or in the vicinity of them. In lead-treated lupine roots, callose was mainly localized in the parenchyma cortex placed lengthwise to the vascular cylinder. Callose deposits in the cell walls may reduce vacuolar transport, as well as increase cell wall resistance to water flow. Deceleration of diffusional water movement to the vascular system, may in turn, influence the rate of long-distance water transport to aerial parts of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号