首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular -amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress -amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimulates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters.  相似文献   

2.
Leaf-cutting ants interact naturally with a range of antagonistic microorganisms, among them the soil-borne fungus Syncephalastrum. The antagonism of this fungus to the leaf-cutting ants’ fungal cultivar has been shown in studies without the ant queens. So far, the impacts of this fungus on whole colonies (queenright) of leaf-cutting ants are unknown. We assessed the impacts of Syncephalastrum on queenless and queenright colonies of Acromyrmex subterraneus subterraneus. In general, Syncephalastrum negatively impacted leaf cutting but not midden production or colony weight. This impact was greater in queenless colonies. Nevertheless, it did not compromise the survival of any colony. This indicates that the virulence of this fungus to leaf-cutting ant colonies may be limited in a more realistic set-up than previously reported. We propose that future laboratory studies also use queenright colonies where possible, and that the diverse species of leaf-cutting ants also be considered.  相似文献   

3.
James K. Wetterer 《Oecologia》1995,104(4):409-415
I compare forager size and foraging ecology of the leaf-cutting ant Acromyrmex coronatus (Fabricius) with published data on three other leaf-cutter species in Costa Rica, Atta cephalotes (L.), Acromyrmex octospinosus (Reich), and Acromyrmex volcanus Wheeler. Intra-and interspecific differences in forager size in these leaf-cutting ants appear to reflect the economics of harvesting different preferred resources. Ac. coronatus colonies have relatively small foragers (mean mass=3.4±1.4 mg) that cut almost exclusively the thin, soft leaves and other parts of small herbaceous plants. Similarly, small A. cephalotes colonies have small foragers (3.3±1.0 mg) that attack the leaves of small herbaceous plants. In contrast, mature A. cephalotes colonies have a wider sizerange of foragers (7.3±4.1 mg) that primarily attack the leaves of trees, with larger foragers cutting thicker, tougher leaves. In A. cephalotes, the match of forager size to leaf type (both ontogenetically and behaviorally) increases foraging efficiency. Extreme forager polymorphism in mature A. cephalotes colonies appears to broaden the diversity of tree species that they can exploit efficiently. Ac. octospinosus and Ac. volcanus both have large, relatively monomorphic foragers (13.3±4.2 mg and 30.6±4.3 mg, respectively) that typically scavenge for pieces of fallen vegetation, such as dead leaves, fruit, and flowers, in addition to cutting herbs. The large foragers of Ac. octospinosus and Ac. volcanus appear to be well suited as generalist foragers, able to cut or collect any desirable vegetation encountered. Ac. coronatus is similar to A. cephalotes in other ways. Both Ac. coronatus and A. cephalotes establish and maintain cleared trunk trails for foraging, and both have minima workers that hitchhike on the loads carried by foragers, apparently serving to protect the larger foragers from attack by phorid flies. Trunk trails and hitchhikers are not known for Ac. octospinosus and Ac. volcanus. That A. coronatus and A. cephalotes show little overlap in geographic distribution within Costa Rica may relate both to differences in habitat requirements and to interspecific competition.  相似文献   

4.
Leaf-cutting ants live symbiotically with a fungus that they cultivate on the plant leaves that they cut. The innumerous studies on the plant selection mechanism used by leaf-cutting ants show the researchers’ interest in this issue. Many classical studies propose that plants are selected according to the fungus garden nutritional needs and the absence of potentially harmful substances. This hypothesis is corroborated by behavioral experiments using cycloheximide (fungicide) with citric pulp or forage plants greatly accepted by leaf-cutting ants. According to this hypothesis, under the action of a fungicide, the fungus emits an allomone that informs worker ants that some food is inadequate to its growth. Although some authors state that the cycloheximide “fungicide” used is specific and non toxic to ants, our findings are distinct. In our study, various concentrations of cycloheximide were administered orally to leaf-cutting worker ants in a citric pulp paste diet. After the ingestion period, the ants were isolated and offered the symbiotic fungus for 21 days and the mortality rate was evaluated. As expected, the treatment with 0.01% cycloheximide showed a low mortality rate (8.86%). At 0.1%, the mortality rate was mild (27.85%), and treatment with 1% cycloheximide resulted in moderate mortality (45.57%). In contrast, the positive control with 0.1% sulfluramid showed a high mortality rate (91.14%). Therefore, we concluded that the ingestion of high concentrations of cycloheximide results in a moderate mortality rate in leaf-cutting worker ants.  相似文献   

5.
The mutualism between leaf-cutting ants and their fungal symbionts revolves around processing and inoculation of fresh leaf pulp in underground fungus gardens, mediated by ant fecal fluid deposited on the newly added plant substrate. As herbivorous feeding often implies that growth is nitrogen limited, we cloned and sequenced six fungal proteases found in the fecal fluid of the leaf-cutting ant Acromyrmex echinatior and identified them as two metalloendoproteases, two serine proteases and two aspartic proteases. The metalloendoproteases and serine proteases showed significant activity in fecal fluid at pH values of 5–7, but the aspartic proteases were inactive across a pH range of 3–10. Protease activity disappeared when the ants were kept on a sugar water diet without fungus. Relative to normal mycelium, both metalloendoproteases, both serine proteases and one aspartic protease were upregulated in the gongylidia, specialized hyphal tips whose only known function is to provide food to the ants. These combined results indicate that the enzymes are derived from the ingested fungal tissues. We infer that the five proteases are likely to accelerate protein extraction from plant cells in the leaf pulp that the ants add to the fungus garden, but regulatory functions such as activation of proenzymes are also possible, particularly for the aspartic proteases that were present but without showing activity. The proteases had high sequence similarities to proteolytic enzymes of phytopathogenic fungi, consistent with previous indications of convergent evolution of decomposition enzymes in attine ant fungal symbionts and phytopathogenic fungi.  相似文献   

6.
Leaf-cutting ants (tribe Attini) are a unique group of ants that cultivate a fungus that serves as a main source of their food. The fungus is grown on fresh leaves that are harvested by workers. We examine the respective contribution of ants and their symbiotic fungus in the degradation of plant material by examining the digestive capacities of seven Attini species in the genera Atta and Acromyrmex. The results show that both, the ants and their mutualistic fungi, have complementary enzymatic activities. Ants are specialized in the degradation of low molecular weight substrates (oligosaccharides and heterosides) whereas the fungus displays high polysaccharidase activity. The two genera Atta and Acromyrmex are not distinguished by a specific enzymatic activity. The seven different mutualistic associations examined display a similar enzymatic profile but have quantitative differences in substrate degradation activities. The respective contribution of ants and the fungus garden in plant degradation are discussed.  相似文献   

7.
Abstract.
  • 1 We studied the role of leaf-cutting ant workers (Atta sexdens (L.) in fungus garden maintenance, by temporarily excluding workers from the garden. This increased its subsequent attractiveness, as expressed by an increase in the numbers of workers licking it.
  • 2 The length of free mycelia on areas of the garden from which workers were excluded increased but was reduced again when workers were returned. Workers therefore removed hyphae from the garden surface.
  • 3 The maximum‘isolation effect’was obtained by preventing ant access for 2–3 days, after which the effect declined. Removing staphylae from portions of garden kept ant-free for 4 and 6 days restored the effect, as the ants were not distracted by harvesting staphylae. Portions of garden kept ant-free for longer than this were no more attractive than non-isolated control garden.
  • 4 Workers were highly efficient in detecting and removing contaminants from their fungus garden. Samples of garden could be isolated from workers for up to 12 days before major growth of contaminants occurred, and this contrasted with the maximum of 6 days for the isolation effect on licking. The isolation effect was therefore not a response to contaminant growths on the garden.
  • 5 Workers on the garden surface may remove hyphae for nutritional reasons, or to‘prune’their fungus and stimulate its growth. In either case, the result is a regulation of fungal growth.
  相似文献   

8.
The aim of this study was to select virulent strains of microfungi against Leucoagaricus gongylophorus, a symbiotic fungus cultivated by leaf-cutting ants. The results from in vitro assays showed that microfungal strains had a variable and significant impact on the colony development of L. gongylophorus. Specifically, Trichoderma harzianum, Escovopsis weberi CBS 810.71 and E. weberi A088 were more effective, inhibiting the L. gongylophorus colonies by 75, 68 and 67%, respectively (P < 0.05) after 15 days. Strain E. weberi A086 and Acremonium kiliense were less effective: 43 and 26%, respectively (P < 0.05). In spite of the current negative perspective of a microbiological control approach for these ants, the present work discusses the possibility of using mycopathogenic fungi for the control of these insects, and points out the importance of encouraging more studies in this area.  相似文献   

9.
Wolbachia are renowned as reproductive parasites, but their phenotypic effects in eusocial insects are not well understood. We used a combination of qrt-PCR, fluorescence in situ hybridization and laser scanning confocal microscopy to evaluate the dynamics of Wolbachia infections in the leaf-cutting ant Acromyrmex octospinosus across developmental stages of sterile workers. We confirm that workers are infected with one or two widespread wsp genotypes of Wolbachia, show that colony prevalence is always 100% and characterize two rare recombinant genotypes. One dominant genotype is always present and most abundant, whereas another only proliferates in adult workers of some colonies and is barely detectable in larvae and pupae. An explanation may be that Wolbachia genotypes compete for host resources in immature stages while adult tissues provide substantially more niche space. Tissue-specific prevalence of the two genotypes differs, with the rarer genotype being over-represented in the adult foregut and thorax muscles. Both genotypes occur extracellularly in the foregut, suggesting an unknown mutualistic function in worker ant nutrition. Both genotypes are also abundant in the faecal fluid of the ants, suggesting that they may have extended functional phenotypes in the fungus garden that the ants manure with their own faeces.  相似文献   

10.
Obligate mutualistic symbioses rely on mechanisms that secure host-symbiont commitments to maximize host benefits and prevent symbiont cheating. Previous studies showed that somatic incompatibilities correlate with neutral-marker-based genetic distances between fungal symbionts of Panamanian Acromyrmex leaf-cutting ants, but the extent to which this relationship applies more generally remained unclear. Here we showed that genetic distances accurately predicted somatic incompatibility for Acromyrmex echinatior symbionts irrespective of whether neutral microsatellites or AFLP markers were used, but that such correlations were weaker or absent in sympatric Atta colombica colonies. Further analysis showed that the symbiont clades maintained by A. echinatior and A. colombica were likely to represent separate gene pools, so that neutral markers were unlikely to be similarly correlated with incompatibility loci that have experienced different selection regimes. We suggest that evolutionarily derived claustral colony founding by Atta queens may have removed selection for strong incompatibility in Atta fungi, as this condition makes the likelihood of symbiont swaps much lower than in Acromyrmex, where incipient nests stay open because queens have to forage until the first workers emerge.  相似文献   

11.
The larvae of leaf-cutting ants are maintained within the fungus gardens of their colonies and are fed pieces of fungus by the adult workers. However, little else is known about the nature of the worker-larva interaction in these ecologically important ants. To examine whether workers can gauge the needs of individual larvae, we isolated larvae without adult workers for different lengths of time. We then placed workers with the larvae and recorded the type and frequency of the subsequent behaviours of the workers. Workers scraped the mouthparts of larvae, ingested their faecal fluid, fed them with fungal hyphae, transported them around the fungus garden and, most frequently, licked their bodies. The workers were also observed to ‘plant’ fungal hyphae on the bodies of larvae. Workers interacted more frequently with larvae that had been isolated without workers than with those that had not, but there was no effect of the length of isolation. The results suggest that the interactions are complex, involving a number of behaviours that probably serve different functions, and that workers are to some extent able to assess the individual needs of larvae. Received 8 November 2004; revised 31 March 2005; accepted 22 April 2005.  相似文献   

12.
Queens of leaf-cutting ants found their nests singly, each consisting of a vertical tunnel and a final horizontal chamber. Because of the claustral mode of nest founding, the queen and/or her initial fungus garden are exposed to threats imposed by several soil pathogens, and the antibiotic secretions produced by their metapleural glands are considered a main adaptation to deal with them. Nests of two Atta leaf-cutting ant species, Atta vollenweideri and Atta sexdens rubropilosa, occur in different soil types, alfisols and oxisols. Their queens are known to excavate the initial nest in different soil horizons, clayish and organic, respectively, which differ in their fertility and associated microbiota. The aim of the present study was to comparatively investigate the morpho-physiology of the metapleural glands in queens of A. vollenweideri and A. sexdens rubropilosa, addressing the question whether the distinct selective pressure imposed by the microbiota in the two different soil types led to morpho-physiological differences in the metapleural glands that were consistent with their antiseptic function. The results revealed that metapleural glands of A. sexdens rubropilosa have a larger number of secretory cells, and consequently a higher production of antibiotic secretions, which may have been selected to allow nest founding at the superficial horizon of oxisols rich in organic matter and microorganisms. Glands of A. vollenweideri, on the contrary, presented fewer secretory cells, suggesting less production of antibiotic secretions. We argue that the excavation of deep founding nests in A. vollenweideri was primarily selected for during evolution to avoid the risk posed by flooding, and further hypothesize that a reduced number of cells in their metapleural glands occurred because of a weak pathogen-driven selective pressure at the preferred soil depth.  相似文献   

13.
14.
15.
The fungus-growing ants (Tribe Attini) are a New World group of〉 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex ( Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers.  相似文献   

16.
RAPD markers were used to examine the degree of genetic variation within the putatively asexual basidiomycete fungus (Lepiotaceae: provisionally named Leucoagaricus gongylophorus) associated with the leaf-cutting ant species Atta cephalotes. We analyzed fungal isolates from ant nests in two geographically distant sites, two isolates from Panama and five isolates from Trinidad. Ten decamer primers were used to amplify total DNA from these seven fungal isolates, and RAPD banding patterns were compared. Genetic similarity among isolates was determined by pair-wise comparisons of the shared number of DNA bands on an agarose gel. There was considerable genetic variation among isolates of the symbiotic fungus even within sites. Pairs of fungal isolates from the two different sites shared an average of only 36% of the bands in their RAPD profiles, while pairs from the within sites shared an average of 72% of the bands. RAPD markers may be useful for further investigation of the genetic structure of the fungal symbiont within species of leaf-cutting ants.  相似文献   

17.
  • 1 Nine synthetic amides similar to natural N‐piperidine‐3‐(4,5‐methylenedioxyphenyl)‐2‐(E)‐propenamide and N‐pyrrolidine‐3‐(4,5‐methylenedyoxiphenyl)‐2‐(E)‐propenamide were synthesized and identified by their spectroscopic data.
  • 2 The toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leucoagaricus gongylophorus, the symbiotic fungus of the leaf‐cutting ants, were determined.
  • 3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N‐pyrrolidine‐3‐(3′,4′‐methylenedioxyphenyl)‐2‐(E)‐propenamide and N‐benzyl‐3‐(3′,4′‐methylenedioxyphenyl)‐2‐(E)‐propenamide at a concentration of 100 µg/mL.
  • 4 The completely inhibition (100%) of the fungal growth was observed with N‐piperidine‐3‐(3′,4′‐methylenedioxyphenyl)‐2‐(E)‐propenamide and N,N‐diethyl‐3‐(3′,4′‐methylenedioxyphenyl)‐2‐(E)‐propenamide at concentrations of 50 and 100 µg/mL and N‐pirrolidine‐3‐(3′,4′‐methylenedioxyphenyl)‐2‐(E)‐propenamide at a concentration of 100 µg/mL.
  • 5 The possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
  相似文献   

18.
Abstract  This study describes and quantifies the behavioural acts of two laboratory colonies of Acromyrmex subterraneus brunneus by investigating worker age polyethism. Twenty-nine behavioural acts were recorded during the 19-week observation period. Young individuals performed tasks inside the nest related to brood care and care for the fungus garden, whereas older individuals performed activities outside the nest such as foraging and activities in the waste chamber. The average longevity (±SD) was 108.21 ± 3.30, 109.15 ± 1.92 and 122.71 ± 1.55 days for large, medium and small workers, respectively. The small-sized workers presented a higher probability of reaching older age than large- and medium-sized workers. This study describes task switching according to age polyethism and the relationship of physical and temporal subcastes.  相似文献   

19.
Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting antAtta sexdens rubropilosa, is able to degrade efficiently cellulose, microcrystaline cellulose, carboximethylcellulose, and cellobiose. Analysis of the degradation products indicate that the fungus produce extracellular -glucosidase, exo- and endo-glucanase. The importance of cellulose degradation to the association of fungus and ant is discussed.  相似文献   

20.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号