首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastric and hypothalamic hormone ghrelin is the endogenous agonist of the growth hormone secretagogue receptor GHS-R1(a). Ghrelin stimulates growth hormone release and appetite via the hypothalamus. However, putative direct peripheral effects of ghrelin remain poorly understood. Rat adipose tissue expresses GHS-R1(a) mRNA, suggesting ghrelin may directly influence adipocyte function. We have investigated the effects of ghrelin on insulin-stimulated glucose uptake in isolated white adipocytes in vitro. RT-PCR confirmed the expression of GHS-R1(a) mRNA in epididymal adipose tissue. However, GHS-R1(a) expression was not detected in the peri-renal fat pads. Ghrelin increased insulin-stimulated deoxyglucose uptake in isolated white adipocytes extracted from the epididymal fat pads of male Wistar rats. Ghrelin 1000 nM significantly increased deoxyglucose uptake by 55% in the presence of 0.1 nM insulin. However, ghrelin administration in the absence of insulin had no effect on adipocyte deoxyglucose uptake, suggesting that ghrelin acts synergistically with insulin. Des-acyl ghrelin, a major circulating non-octanylated form of ghrelin, had no effect on insulin-stimulated glucose uptake. Furthermore, acylated ghrelin had no effect on deoxyglucose uptake in adipocytes from peri-renal fat pads suggesting that ghrelin may influence glucose uptake via the GHS-R1(a). Ghrelin therefore appears to directly potentiate adipocyte insulin-stimulated glucose uptake in selective adipocyte populations. Ghrelin may play a role in adipocyte regulation of glucose homeostasis.  相似文献   

2.
3.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

4.
Emodin, one of the main active components in the root and rhizome of Rheum palmatum L, promoted the conversion of 3T3-L1 fibroblasts to adipocytes, as evidenced by increased glycerol-3-phosphate dehydrogenase (GPDH) activity and the expression of adipocyte aP2 mRNA, as well as accelerated triacylglycerol (TG) accumulation, which was associated with increased mRNA expression levels of both C/EBPalpha and PPARgamma2. By using surface plasmon resonance (SPR) experiment, it was showed that emodin exhibited a very high binding affinity to PPARgamma. In differentiated 3T3-L1 adipocytes, emodin induced a time- and dose-dependent increase in glucose uptake as well as GLUT1 and GLUT4 mRNA expression, and the rate of uptake was partly abrogated by wortmannin (phosphoinositide 3-kinase inhibitor). Meanwhile, insulin-stimulated glucose uptake was increased significantly after treatment with low doses of emodin, and the degree of potentiation was decreased thereafter in response to increasing concentrations. Furthermore, 50 microM emodin profoundly inhibited insulin-stimulated glucose uptake by 25%. These data suggest a new role for emodin as a PPARgamma agonist in 3T3-L1 cells. Besides, it is possible that emodin may also possess other properties contribute to glucose utilization in the adipocytes.  相似文献   

5.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-gamma from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-gamma knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-gamma suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-gamma deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-gamma-depleted cells displayed enhanced inflammatory responses to TNF-alpha stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-gamma. In summary, 1) PPAR-gamma is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-gamma supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-gamma may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.  相似文献   

6.
The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.  相似文献   

7.
Insulin and insulin-like growth factor I signals are mediated via phosphorylation of a family of insulin receptor substrate (IRS) proteins, which may serve both complementary and overlapping functions in the cell. To study the metabolic effects of these proteins in more detail, we established brown adipocyte cell lines from wild type and various IRS knockout (KO) animals and characterized insulin action in these cells in vitro. Preadipocytes derived from both wild type and IRS-2 KO mice could be fully differentiated into mature brown adipocytes. In differentiated IRS-2 KO adipocytes, insulin-induced glucose uptake was decreased by 50% compared with their wild type counterparts. This was the result of a decrease in insulin-stimulated Glut4 translocation to the plasma membrane. This decrease in insulin-induced glucose uptake could be partially reconstituted in these cells by retrovirus-mediated re-expression of IRS-2, but not overexpression of IRS-1. Insulin signaling studies revealed a total loss of IRS-2-associated phosphatidylinositol (PI) 3-kinase activity and a reduction in phosphotyrosine-associated PI 3-kinase by 30% (p < 0.05) in the KO cells. The phosphorylation and activity of Akt, a major downstream effector of PI 3-kinase, as well as Akt-dependent phosphorylation of glycogen synthase kinase-3 and p70S6 kinase were not affected by the lack of IRS-2; however, there was a decrease in insulin stimulation of Akt associated with the plasma membrane. These results provide evidence for a critical role of IRS-2 as a mediator of insulin-stimulated Glut4 translocation and glucose uptake in adipocytes. This occurs without effects in differentiation, total activation of Akt and its downstream effectors, but may be caused by alterations in compartmentalization of these downstream signals.  相似文献   

8.
c-Cbl-associated protein (CAP) is an SH3-containing adapter protein that binds to the proto-oncogene c-Cbl. Recent work suggests that signaling through these molecules is involved in the regulation of insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Skeletal muscle is the major site of insulin-stimulated glucose disposal but there have been no reports of CAP function in this tissue. Using RT-PCR of mouse skeletal muscle RNA, we discovered a novel splice variant of CAP (CAPSM; GenBank Accession No. AF521593) that is different from the adipocyte form by inclusion of a novel 168 bp fragment. This fragment encodes a peptide sequence that shows very high similarity with exon 25 of the human homologue of CAP (SORBS1). To understand the function of CAPSM in glucose uptake regulation, L6 myotubes were transfected with either CAPSM or a truncated CAPSM devoid of all three SH3-binding domains (CAPDeltaSH3), which prevents CAP association with c-Cbl. Transfection with CAPDeltaSH3 decreased insulin-stimulated 2-deoxyglucose (2-DG) uptake and reduced c-Cbl phosphorylation. In contrast, transfection of L6 myotubes with CAPDeltaSH3 had no effect on dinitrophenol (DNP)- or hypoxia-stimulated glucose uptake, stimuli that work through insulin-independent mechanisms for the regulation of glucose uptake. These data demonstrate the existence of a novel CAP isoform expressed in skeletal muscle, and suggest the involvement of the CAP/Cbl pathway in the regulation of insulin-stimulated glucose uptake in L6 myotubes.  相似文献   

9.
With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to conventional two-dimensional cell culturing on plastic surfaces, can produce spatial cues that drive the cells towards a more mature state. We investigated the adipogenesis of adipose derived stem cells on electro spun polycaprolactone matrices and compared functionality to conventional two-dimensional cultures as well as to human primary mature adipocytes. To assess the degree of adipogenesis we measured cellular glucose-uptake and lipolysis and used a range of different methods to evaluate lipid accumulation. We compared the averaged results from a whole population with the single cell characteristics – studied by coherent anti-Stokes Raman scattering microscopy - to gain a comprehensive picture of the cell phenotypes. In adipose derived stem cells differentiated on a polycaprolactone-fiber matrix; an increased sensitivity in insulin-stimulated glucose uptake was detected when cells were grown on either aligned or random matrices. Furthermore, comparing differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrixes, to those differentiated in two-dimensional cultures showed, an increase in the cellular lipid accumulation, and hormone sensitive lipase content. In conclusion, we propose an adipocyte cell model created by differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrices which demonstrates increased maturity, compared to 2D cultured cells.  相似文献   

10.
The plant hormone abscisic acid (ABA) is released from glucose-challenged human pancreatic β cells and stimulates insulin secretion. We investigated whether plasma ABA increased during oral and intravenous glucose tolerance tests (OGTTs and IVGTTs) in healthy human subjects. In all subjects undergoing OGTTs (n=8), plasma ABA increased over basal values (in a range from 2- to 9-fold). A positive correlation was found between the ABA area under the curve (AUC) and the glucose AUC. In 4 out of 6 IVGTTs, little or no increase of ABA levels was observed. In the remaining subjects, the ABA increase was similar to that recorded during OGTTs. GLP-1 stimulated ABA release from an insulinoma cell line and from human islets, by ~10- and 2-fold in low and high glucose, respectively. Human adipose tissue also released ABA in response to high glucose. Nanomolar ABA stimulated glucose uptake, similarly to insulin, in rat L6 myoblasts and in murine 3T3-L1 cells differentiated to adipocytes, by increasing GLUT-4 translocation to the plasma membrane. Demonstration that a glucose load in humans is followed by a physiological rise of plasma ABA, which can enhance glucose uptake by adipose tissues and muscle cells, identifies ABA as a new mammalian hormone involved in glucose metabolism.  相似文献   

11.
Though it is well accepted that adipose tissue is central in the regulation of glycemic homeostasis, the molecular mechanisms governing adipocyte glucose uptake remain unclear. Recent studies demonstrate that mitochondrial dynamics (fission and fusion) regulate lipid accumulation and differentiation in adipocytes. However, the role of mitochondrial dynamics in glucose homeostasis has not been explored. The nitric oxide oxidation products nitrite and nitrate are endogenous signaling molecules and dietary constituents that have recently been shown to modulate glucose metabolism, prevent weight gain, and reverse the development of metabolic syndrome in mice. Although the mechanism of this protection is unclear, the mitochondrion is a known subcellular target for nitrite signaling. Thus, we hypothesize that nitrite modulates mitochondrial dynamics and function to regulate glucose uptake in adipocytes. Herein, we demonstrate that nitrite significantly increases glucose uptake in differentiated murine adipocytes through a mechanism dependent on mitochondrial fusion. Specifically, nitrite promotes mitochondrial fusion by increasing the profusion protein mitofusin 1 while concomitantly activating protein kinase A (PKA), which phosphorylates and inhibits the profission protein dynamin-related protein 1 (Drp1). Functionally, this signaling augments cellular respiration, fatty acid oxidation, mitochondrial oxidant production, and glucose uptake. Importantly, inhibition of PKA or Drp1 significantly attenuates nitrite-induced mitochondrial respiration and glucose uptake. These findings demonstrate that mitochondria play an essential metabolic role in adipocytes, show a novel role for both nitrite and mitochondrial fusion in regulating adipocyte glucose homeostasis, and have implications for the potential therapeutic use of nitrite and mitochondrial modulators in glycemic regulation.  相似文献   

12.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

13.
Benzyl alcohol and ethanol, at aqueous concentrations that cause local anesthesia of rat sciatic nerve, affect structural and functional properties of rat adipocytes. The data strongly suggest that structurally-intact membrane lipids are required for the proper cellular uptake of glucose and for the physiologic response of adipocytes to insulin. The structure of adipocyte membrane lipids was examined with the spin label method. Isolated adipocyte ‘ghost’ membranes were labeled with the 5-nitroxide stearate spin probe I(12,3). Order parameters that are sensitive to the fluidity of the lipid environment of the incorporated probe were calculated from ESR spectra of labeled membranes. Benzyl alcohol and ethanol dramatically increased the fluidity of the adipocyte ghost membrane, as indicated by decreases in the polarity-corrected order parameter S. This concentration-dependent fluidization commenced at approx. 10 mM benzyl alcohol and progressively increased at all higher concentrations tested (up to 107 mM). S decreased approx. 5.7% at 40 mM benzyl alcohol, a change in S comparable in magnitude to that induced by a 6°C increase in the incubation temperature. Benzyl alcohol and ethanol inhibited basal glucose uptake in adipocytes and uptake maximally stimulated by insulin. Temperature-induced increases in membrane fluidity, detected with 1(12,3), that closely paralleled the fluidity effects of alcohols were associated only with increases in basal and insulin-stimulated glucose uptake. The contention that the membrane lipid fluidity plays a role in insulin action needs further study.  相似文献   

14.
Muscle and fat cells translocate GLUT4 (glucose transporter 4) to the plasma membrane when stimulated by insulin. Usually, this event is measured in differentiated adipocytes, myotubes, or cell lines overexpressing tagged GLUT4 by immunostaining. However, measurement of the translocation in differentiated adipocytes or myotubes or GLUT4 overexpressing cell lines is difficult because of high assay variability caused by either the differentiation protocol or low assay sensitivity. We recently reported the identification of a novel splice variant of AS160 (substrate of 160 kDa), namely AS160_v2, and showed that its coexpression with GLUT4 in L6 myoblasts increased the insulin-stimulated glucose uptake rate due to an increased amount of GLUT4 on the cell surface. L6 cells, which coexpress myc-tagged GLUT4 and AS160_v2, can be efficiently used to generate an assay useful for identifying compounds that affect cellular responses to insulin. We compared the EC50 values for radioactive glucose uptake and GLUT4 translocation of different insulins and several small molecules to validate the assay. The use of L6 cells overexpressing AS160_v2 can be considered as a novel tool for the characterization of molecules modulating insulin signaling and GLUT4 translocation, and an image-based assay increases our confidence in the mode of action of the compounds identified.  相似文献   

15.
Insulin plays a central role in the regulation of glucose homeostasis in part by stimulating glucose uptake and glycogen synthesis. The serine/threonine protein kinase Akt has been proposed to mediate insulin signaling in several processes. However, it is unclear whether Akt is involved in insulin-stimulated glucose uptake and which isoforms of Akt are responsible for each insulin action. We confirmed that expression of a constitutively active Akt, using an adenoviral expression vector, promoted translocation of glucose transporter 4 (GLUT4) to plasma membrane, 2-deoxyglucose (2-DG) uptake, and glycogen synthesis in both Chinese hamster ovary cells and 3T3-L1 adipocytes. Inhibition of Akt either by adenoviral expression of a dominant negative Akt or by the introduction of synthetic 21-mer short interference RNA against Akt markedly reduced insulin-stimulated GLUT4 translocation, 2-DG uptake, and glycogen synthesis. Experiments with isoform-specific short interference RNA revealed that Akt2, and Akt1 to a lesser extent, has an essential role in insulin-stimulated GLUT4 translocation and 2-DG uptake in both cell lines, whereas Akt1 and Akt2 contribute equally to insulin-stimulated glycogen synthesis. These data suggest a prerequisite role of Akt in insulin-stimulated glucose uptake and distinct functions among Akt isoforms.  相似文献   

16.
Fas (CD95) belongs to the superfamily of the tumor necrosis factor (TNF) receptors. Besides its key role in apoptosis, Fas contributes to non-apoptotic pathways such as cell proliferation and inflammation. In 3T3-L1 adipocytes, activation of Fas by Fas ligand decreased insulin-stimulated glucose uptake, without affecting cell viability. This decrease in glucose uptake was accompanied by reduced protein expression and diminished phosphorylation of Akt. Similarly, insulin-stimulated glucose incorporation and protein levels of Akt were increased in isolated adipocytes from Fas deficient mice when compared to wild-type mice. In conclusion, Fas activation in adipocytes decreases Akt expression and thereby impairs insulin sensitivity.  相似文献   

17.
The GLUT4-containing vesicles purified from rat adipocyte contain many protein species of unknown identity, some of which are likely to play a critical role in the trafficking of GLUT4. Presently, we describe an 85-kDa protein in GLUT4-vesicles of rat adipocytes as a potential GLUT4 traffic regulatory protein. MALDI-TOF MS, RT-PCR, gene cloning, protein sequence analysis, and immunoreactivity assay have identified this protein as N-acetylated alpha-linked acidic dipeptidase (NAALADase) expressed in rat adipocytes. NAALADase in rat adipocytes was mostly membrane-associated and colocalized in discrete GLUT4-compartments with enrichment in putative GLUT4-sorting endosomes (G4G(L)). Total cell lysates of adipocytes exhibited NAALADase activity. Next, we treated rat adipocytes with 2-[phosphonomethy]pentanedionic acid (2-PMPA), a potent NAALADase inhibitor, and studied its effect on the distribution of GLUT4 and 3-O-methyl glucose (3OMG) flux. In 2-PMPA-treated adipocytes, there was a significant reduction (by 40%) in the insulin-stimulated GLUT4 translocation to the plasma membrane. The 3OMG flux in insulin-stimulated adipocytes was also delayed (51% of control) by 2-PMPA treatment, indicating that 2-PMPA impairs insulin-stimulated GLUT4 recruitment and the uptake of glucose. It is suggested that NAALADase may function as a regulator required for the insulin-stimulated GLUT4 vesicle movement and/or its exocytosis, thus may regulate insulin-induced GLUT4 recruitment in rat adipocytes.  相似文献   

18.
Adipocytes play a vital role in glucose metabolism. 3T3 L1 pre adipocytes after differentiation to adipocytes serve as excellent in vitro models and are useful tools in understanding the glucose metabolism. The traditional approaches adopted in pre adipocyte differentiation are lengthy exercises involving the usage of IBMX and Dexamethasone. Any effort to shorten the time of differentiation and quality expression of functional differentiation in 3T3 L1 cells in terms of enhanced Insulin sensitivity has an advantage in the drug discovery process. Thus, there is a need to develop a new effective method of differentiating the pre adipocytes to adipocytes and to use such methods for developing efficacious therapeutic molecules. We observed that a combination of Dexamethasone and Troglitazone generated differentiated adipocytes over fewer days as compared to the combination of IBMX and Dexamethasone which constitutes the standard protocol followed in our laboratory. The experiments conducted to compare the quality of differentiation yielded by various differentiating agents indicated that the lipid droplet accumulation increased by 112 % and the GLUT4 mediated glucose uptake by 137 % in cells differentiated with Troglitazone and Dexamethasone than in cells differentiated traditionally. The comparative studies conducted for evaluating efficient measurable glucose uptake by GOPOD assay, radioactive 3H-2-deoxy-D-glucose assay and by non-radioactive 6-NBDG (fluorescent analog of glucose) indicated that the non-radioactive method using 6-NBDG showed a higher signal to noise ratio than the conventional indirect glucose uptake method (GOPOD assay) and the radioactive 3H-2-deoxy-D-glucose uptake method. Differentiated 3T3 L1 cells when triggered with 2.5 ng/mL of Insulin showed 3.3 fold more glucose uptake in non-radioactive method over the radioactive 3H-2-deoxy-D-glucose uptake method. The results of this study have suggested that a combination of Dexamethasone and Troglitazone for 3T3 L1 cell differentiation helps in better quality differentiation over a short period of time with increased sensitivity to Insulin. The application of these findings for developing new methods of screening novel Insulin mimetics and for evaluating the immunological responses has been discussed.  相似文献   

19.
We have studied the in vivo and in vitro effects of Topiramate (TPM) in female Zucker diabetic fatty (ZDF) rats. After weight matching, drug treatment had a marked effect to lower fasting glucose levels of relatively normoglycemic animals as well as during an oral glucose tolerance test. The glucose clamp studies revealed a approximately 30% increased glucose disposal, increased hepatic glucose output (HGO) suppression from approximately 30 to 60%, and an increased free fatty acid suppression from 40 to 75%. Therefore, TPM treatment led to enhanced insulin sensitivity at the level of tissue glucose disposal (increased ISGDR), liver (increased inhibition of HGO), and adipose tissue (enhanced suppression of lipolysis). When soleus muscle strips of control or TPM-treated ZDF rats were studied ex vivo, insulin-stimulated glucose transport was not enhanced in the drug-treated animals. In contrast, when isolated adipocytes were studied ex vivo, a marked increase (+55%) in insulin-stimulated glucose transport was observed. In vitro treatment of muscle strips and rat adipocytes showed no effect on glucose transport in muscle with a 40% increase in insulin-stimulated adipocyte glucose transport. In conclusion, 1) TPM treatment leads to a decrease in plasma glucose and increased in vivo insulin sensitivity; 2) insulin sensitization was observed in adipocytes, but not muscle, when tissues were studied ex vivo or in vitro; and 3) TPM directly enhances insulin action in insulin-resistant adipose cells in vitro. Thus the in vivo effects of TPM treatment appear to be exerted through adipose tissue.  相似文献   

20.
We have examined the effects of extracellular and intracellular Ca2+ concentrations upon basal and insulin-stimulated 2-deoxyglucose uptake in isolated rat adipocytes. In the absence of extracellular Ca2+, both basal and insulin-stimulated glucose uptake were significantly reduced. Insulin-stimulated glucose transport was optimal at 1 and 2 mM Ca2+. Further increases in extracellular Ca2+ concentration (3 mM) significantly diminished insulin-stimulated glucose uptake. When intracellular Ca2+ concentrations were augmented by ionomycin (1 microM), insulin-stimulated glucose uptake was significantly reduced at extracellular Ca2+ concentrations of 2 and 3 mM. The levels of intracellular free Ca2+ concentrations were then measured with Ca2+ indicator fura-2. The correlation between the levels of intracellular free Ca2+ and the magnitude of insulin-stimulated glucose uptake revealed that the optimal effect of insulin is observed at Ca2+ levels between 140 and 370 nM. At both extremes outside of this window, both low and high levels of intracellular Ca2+ result in diminished cellular responsiveness to insulin. These data suggest that intracellular calcium concentrations may exert a dual role in the regulation of cellular sensitivity to insulin. First, there must exist a minimal concentration of intracellular calcium to promote insulin action. Second, increased levels of intracellular calcium may provide a critical signal for diminution of insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号