首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study was designed to explore the effect of recombinant, membrane-targeted CD59 (rCD59-APT542) on the growth and size of fully developed neovascular complex using the murine model of laser-induced choroidal neovascularization (CNV). CNV was induced by laser photocoagulation in C57BL/6 mice using an argon laser, and the animals received rCD59-APT542 via intravitreal (ivt) route. Western blot analysis, immunohistochemistry, and total complement hemolytic assay demonstrated that exogenously administered rCD59-APT542 was incorporated as well as retained in RPE and choroid and was functionally active in vivo. Single ivt injection during the growth of the CNV (i.e. at day 3 post-laser) resulted in ∼79% inhibition of the further growth of neovascular complex. The size of the CNV complex was significantly (p < 0.05) reduced by the administration of rCD59-APT542 after the CNV complex has fully developed (i.e. at day 7 post-laser). Treatment with rCD59-APT542 blocked the formation of membrane attack complex (MAC), increased apoptosis and decreased cell proliferation in the neovascular complex. On the basis of results presented here we conclude that recombinant membrane targeted CD59 inhibited the growth of the CNV complex and reduced the size of fully developed CNV in the laser-induced mouse model. We propose that a combination of two mechanisms: increased apoptosis and decreased cell proliferation, both resulting from local inhibition of MAC, may be responsible for inhibition of CNV by rCD59-APT542.  相似文献   

3.
We established a sustained vasohibin-1 (a 42-kDa protein), delivery device by a novel method using photopolymerization of a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV) using a transscleral approach. We used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 μM vasohibin-1 delivery device [10VDD]). The released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera, choroid, retinal pigment epithelium (RPE), and neural retina after device implantation. Stronger immunoreactivity at the RPE and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA) scores and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 μM vasohibin-1 delivery device), and vasohibin-1 intravitreal direct injection (0.24 μM) groups when compared to the pellet, non-vasohibin-1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease using the transscleral approach.  相似文献   

4.
Age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions are complicated by neovascularization and macular edema. Multi-targeted kinase inhibitors that inhibit select growth factor receptor tyrosine kinases and/or components of their down-stream signaling cascades (such as Src kinases) are rationale treatment strategies for these disease processes. We describe the discovery and characterization of two such agents. TG100572, which inhibits Src kinases and selected receptor tyrosine kinases, induced apoptosis of proliferating endothelial cells in vitro. Systemic delivery of TG100572 in a murine model of laser-induced choroidal neovascularization (CNV) caused significant suppression of CNV, but with an associated weight loss suggestive of systemic toxicity. To minimize systemic exposure, topical delivery of TG100572 to the cornea was explored, and while substantial levels of TG100572 were achieved in the retina and choroid, superior exposure levels were achieved using TG100801, an inactive prodrug that generates TG100572 by de-esterification. Neither TG100801 nor TG100572 were detectable in plasma following topical delivery of TG100801, and adverse safety signals (such as weight loss) were not observed even with prolonged dosing schedules. Topical TG100801 significantly suppressed laser-induced CNV in mice, and reduced fluorescein leakage from the vasculature and retinal thickening measured by optical coherence tomography in a rat model of retinal vein occlusion. These data suggest that TG100801 may provide a new topically applied treatment approach for ocular neovascularization and retinal edema.  相似文献   

5.
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser-induced choroidal neovascularization but suggest that the therapeutic efficacy of CCR2-inhibition might be limited.  相似文献   

6.
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium–choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD.  相似文献   

7.
Genistein is a dietary-derived flavonoid abundantly present in soybeans and known to possess various biological effects including anti-inflammation and anti-angiogenic activity. To investigate the effects of genistein on intraocular neovascularization, we used an animal model of laser-induced choroidal neovascularization (CNV). Male C57BL/6J mice were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. CNV was induced by laser photocoagulation. The animals were fed a mixture diet containing 0.5% genistein or a control diet ad libitum for 7 days before laser photocoagulation and the treatment was continued until the end of the study. Seven days after laser injury, the size of CNV lesions was quantified. Retinal pigment epithelium (RPE)-choroid complex was also harvested 1 or 3 days after laser injury and the level of monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1, and matrix metalloproteinase (MMP)-9 were measured by enzyme-linked immunosorbent assay. Expression levels of Ets-1 and F4/80 were examined by real-time PCR. A significant decrease in CNV size was observed in animals treated with genistein (15441.9±1511.8 μm2) compared to control mice (21074.0±1940.7μm2, P<.05). Genistein significantly reduced the protein level of MCP-1, ICAM-1, and MMP-9 in the RPE-choroid complex (P<.05). In addition, genistein suppressed the expression levels of Ets-1 and F4/80 (P<.05). The current data indicate the anti-angiogenic property of genistein during CNV formation.  相似文献   

8.
We have shown that membrane attack complex (MAC) formation via the activation of the alternative pathway plays a central role in the laser-induced choroidal neovascularization (CNV). This study was undertaken to understand the role of a complement regulatory protein, CD59, which controls MAC assembly and function, in this model. CNV was induced by laser photocoagulation in C57BL/6 and Cd59a(-/-) mice using an argon laser. Animals from each group were sacrificed on day 1, 3, 5, and 7 postlaser. Retinal pigment epithelium-choroid-scleral tissue was examined to determine the incidence and size of CNV complex, and semiquantitative RT-PCR and Western blot analysis for CD59a was studied. Recombinant soluble mouse CD59a-IgG2a fusion (rsCD59a-Fc) protein was injected via i.p. or intravitreal routes 24 h before laser. Our results demonstrated that CD59a (both mRNA and protein) was down-regulated during laser-induced CNV. Cd59a(-/-) mice developed CNV complex early in the disease process. Increased MAC deposition was also observed in these Cd59a(-/-) mice. Administration of rsCD59a-Fc inhibited the development of CNV complex in the mouse model by blocking MAC formation and also inhibited expression of angiogenic growth factors. These data provide strong evidence that CD59a plays a crucial role in regulating complement activation and MAC formation essential for the release of growth factors that drive the development of laser-induced CNV in mice. Thus, our results suggest that the inhibition of complement by soluble CD59 may provide a novel therapeutic alternative to current treatment.  相似文献   

9.
The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch’s membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD.Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.  相似文献   

10.
Choroidal neovascularization (CNV), or choroidal angiogenesis, is the hallmark of age-related macular degeneration and a leading cause of visual loss after age 55. The pathogenesis of new choroidal vessel formation is poorly understood. Although inflammation has been implicated in the development of CNV, the role of complement in CNV has not been explored experimentally. A reliable way to produce CNV in animals is to rupture Bruch's membrane with laser photocoagulation. A murine model of laser-induced CNV in C57BL/6 mice revealed the deposition of C3 and membrane attack complex (MAC) in the neovascular complex. CNV was inhibited by complement depletion using cobra venom factor and did not develop in C3(-/-) mice. Anti-murine C6 Abs in C57BL/6 mice inhibited MAC formation and also resulted in the inhibition of CNV. Vascular endothelial growth factor, TGF-beta2, and beta-fibroblast growth factor were elevated in C57BL/6 mice after laser-induced CNV; complement depletion resulted in a marked reduction in the level of these angiogenic factors. Thus, activation of complement, specifically the formation of MAC, is essential for the development of laser- induced choroidal angiogenesis in mice. It is possible that a similar mechanism may be involved in the pathophysiology of other angiogenesis essential diseases.  相似文献   

11.
The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.  相似文献   

12.
13.
Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch’s membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor-1α and vascular endothelial growth factor (VEGF), and up-regulate the anti-angiogenic and neuro-protective pigment epithelium derived factor in human retinal pigment epithelial (RPE) cells. Most strikingly, TSA markedly down-regulates the expression of VEGF receptor-2 in human vascular endothelial cells and, thus, can knock down pro-angiogenic cell signaling. Additionally, TSA suppresses CNV-associated wound healing response and RPE epithelial-mesenchymal transdifferentiation. In the laser-induced model of CNV using C57Bl/6 mice, systemic administration of TSA significantly reduces fluorescein leakage and the size of CNV lesions at post—laser days 7 and 14 as well as the immunohistochemical expression of VEGF, VEGFR2, and smooth muscle actin in CNV lesions at post-laser day 7. This report suggests that TSA, and possibly HDACi’s in general, should be further evaluated for their therapeutic potential for the treatment of CNV.  相似文献   

14.
The objective of this study was to explore the role of classical, lectin, and alternative pathways of complement activation in laser-induced choroidal neovascularization (CNV). The classical and alternative pathways were blocked in C57BL/6 mice by small interfering RNAs (siRNA) directed against C1q and factor B, respectively. C4(-/-) mice developed CNV similar to their wild-type controls and inhibition of C1q by siRNA had no effect on the development of CNV. In contrast, CNV was significantly inhibited (p < 0.001) in C5(-/-) mice and C57BL/6 mice treated with factor B siRNA. Inhibition of the alternative pathway by factor B siRNA resulted in decreased levels of membrane attack complex and angiogenic factors-vascular endothelial growth factor and TGF-beta2. Furthermore, factor B was up-regulated in complement sufficient C57BL/6 mice at day 1 postlaser and remained elevated at day 7. Significantly reduced levels of factor H were observed at day 3 in these animals. In conclusion, our results demonstrate that activation of the factor B-dependent alternative pathway, but not the classical or lectin pathways, was essential for the development of CNV in mouse model of laser-induced CNV. Thus, specific blockade of the alternative pathway may represent a therapeutically relevant strategy for the inhibition of CNV.  相似文献   

15.

Purpose

Adrenomedullin (ADM) has been shown to take part in physiological and pathological angiogenesis. The purpose of this study was to investigate whether ADM signaling is involved in choroidal neovascularization (CNV) using a mouse model.

Methods and Results

CNV was induced by laser photocoagulation in 8-week-old C57BL/6 mice. ADM mRNA expression significantly increased following treatment, peaking 4 days thereafter. The expression of ADM receptor (ADM-R) components (CRLR, RAMP2 and RAMP 3) was higher in CD31+CD45 endothelial cells (ECs) than CD31CD45 non-ECs. Inflammatory stimulation upregulated the expression of ADM not only in cell lines but also in cells in primary cultures of the choroid/retinal pigment epithelium complex. Supernatants from TNFα-treated macrophage cell lines potentiated the proliferation of ECs and this was partially suppressed by an ADM antagonist, ADM (22–52). Intravitreous injection of ADM (22–52) or ADM neutralizing monoclonal antibody (mAb) after laser treatment significantly reduced the size of CNV compared with vehicle-treated controls (p<0.01).

Conclusions

ADM signaling is involved in laser-induced CNV formation, because both an ADM antagonist and ADM mAb significantly inhibited it. Suppression of ADM signaling might be a valuable alternative treatment for CNV associated with age-related macular degeneration.  相似文献   

16.
Cyclooxygenases (COXs) are involved in choroidal neovascularization (CNV). However, the relative contribution of COX-1 and -2 to CNV has not been determined. In this study, the expression of COX-2 was investigated in CNVs in a murine laser-induced model. Subsequently, we found that experimental CNV expressed COX-2, most remarkably around the highly vascularized lesions. To examine the effect of COX-2 inhibition on CNV, etodolac, a non-steroidal anti-inflammatory drug with a high COX-2 selectivity, was tested on murine CNV model. The results demonstrated that the intensity of fluorescein leakage from the photocoagulated lesions decreased significantly compared to the control eyes following etodolac administration. The area of CNV lesions, as examined using histological sections and choroidal flatmounts at day 7, demonstrated that the average size of the CNV lesions was significantly reduced in the etodolac-treated eyes compared to the control eyes. Together, our results demonstrated that selective COX-2 inhibition suppresses CNV.  相似文献   

17.
Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is a major agent in choroidal and retinal neovascularization, events associated with age-related macular degeneration (AMD) and diabetic retinopathy. Retinal pigment epithelium (RPE), strategically located between retina and choroid, plays a critical role in retinal disorders. We have examined the effects of various growth factors on the expression and secretion of VEGF by human retinal pigment epithelial cell cultures (HRPE). RT-PCR analyses revealed the presence of three isoforms of mRNA corresponding to VEGF 121, 165, and 189 that were up regulated by TGF-beta1. TGF-beta1, beta2, and beta3 were the potent inducers of VEGF secretion by HRPE cells whereas bFGF, PDGF, TGF-alpha, and GM-CSF had no effects. TGF-beta receptor type II antibody significantly reversed induction of VEGF secretion by TGF-beta. In contrast activin, inhibin and BMP, members of TGF-beta super family, had no effects on VEGF expression in HRPE. VEGF mRNA levels and protein secretion induced by TGF-beta were significantly inhibited by SB203580 and U0126, inhibitors of MAP kinases, but not by staurosporine and PDTC, protein kinase C and NF-kappaB pathway inhibitors, respectively. TGF-beta also induced VEGF expression by fibroblasts derived from human choroid of eye. TGF-beta induction of VEGF secretion by RPE and choroid cells may play a significant role in choroidal neovascularization (CNV) in AMD. Since the secretion of VEGF by HRPE is regulated by MAP kinase pathways, MAP kinase inhibitors may have potential use as therapeutic agents for CNV in AMD.  相似文献   

19.
Choroidal neovascularization (CNV) is an important pathologic component of neovascular age-related macular degeneration (AMD), and CNV lesions later develop into fibrous scars, which contribute to the loss of central vision. Nowadays, the precise molecular and cellular mechanisms underlying CNV and subretinal fibrosis have yet to be fully elucidated. Cyclooxygenase-2 (COX-2) has previously been implicated in angiogenesis and fibrosis. However, the role of COX-2 in the pathogenesis of CNV and subretinal fibrosis is poorly understood. The present study reveals several important findings concerning the relationship of COX-2 signaling with CNV and subretinal fibrosis. Experimental CNV lesions were attenuated by the administration of NS-398, a COX-2-selective antagonist. NS-398-induced CNV suppression was found to be mediated by the attenuation of macrophage infiltration and down-regulation of VEGF in the retinal pigment epithelium–choroid complex. Additionally, NS-398 attenuated subretinal fibrosis, in an experimental model of subretinal scarring observed in neovascular AMD, by down-regulation of TGF-β2 in the retinal pigment epithelium–choroid complex. Moreover, we cultured mouse RPE cells and found that NS-398 decreased the secretion of VEGF and TGF-β2 in mouse RPE cells. The results of the present study provide new findings regarding the molecular basis of CNV and subretinal fibrosis, and provide a proof-of-concept approach for the efficacy of COX-2 inhibition in treating subretinal fibrosis.  相似文献   

20.
Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD), the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR) 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV), a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP). Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+), CD45(+) or Iba1(+) cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF) and VEGF–B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1) delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101) had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1gfp/gfp and CX3CR1gfp/+ mice. Minocycline treatment caused a significant increase in lectin+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia/macrophage appears to be a compelling therapeutic strategy to control CNV and treat wet AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号