首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mangiferin is found in many plant species as the mango tree (Mangifera indica) with ethnopharmacological applications and scientific evidence. The emergence of resistant herpes simplex virus (HSV) strains to Acyclovir (ACV) has encouraged the search for new drugs. We investigated the in vitro and in vivo activity of mangiferin obtained from M. indica against ACV-resistant HSV-1 (AR-29) and sensitive (KOS) strains. The in vitro activity was performed under varying treatment protocols. The substance showed a CC50 > 500 μg/mL and IC50 of 2.9 μg/mL and 3.5 μg/mL, respectively, for the AR-29 and KOS strains. The in vivo activity was performed in Balb/c mice treated with 0.7% topical mangiferin formulation. This formulation inhibited most effectively the AR-29 strain, attenuated the lesions, postponed their appearance or enhanced healing, in comparison to control group. We demonstrated the potentiality of mangiferin from M. indica to control HSV replication with emphasis to ACV-resistant infection.  相似文献   

3.
Memory impairment (MI) is one of the predominant criteria generally used to identify schizophrenia, dementia and amnesia that are associated with neurodegenerative disorders by evaluating patient’s cognitive symptoms. To date, there is no available treatment that can completely mitigate MI. Currently, there is a trend in recent investigations towards symptomatic therapy approaches using a variety of natural compounds. Mangiferin is one of them that have been investigated extensively. Mangiferin is a naturally occurring potent glucoxilxanthone and is mainly isolated from the Mangifera indica (Mango) plant. This review is aimed at providing a comprehensive overview on the efficacy of mangiferin on MI, based on in-vivo animal studies. After screening through articles identified from Scopus and PubMed based on the inclusion and exclusion criteria, a total of 11 articles between 2009 and 2019 were included. The minimum and maximum dose of mangiferin were 10 and 200 mg/kg respectively and administered over the period of 12–154 days. The results of 11 articles showed that mangiferin effectively improved spatial recognition, episodic aversive events, short- and long-term memories primarily occurring via its antioxidant and anti-inflammatory effects. The outcomes of the review revealed that mangiferin improves memory and cognitive impairment in different animal models, indicating that it has potential preventive and therapeutic roles in MI.  相似文献   

4.
Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L-NAME. These data suggest that the antispasmodic effect of mangiferin is mediated by epithelium-nitric oxide- and cGMP-dependent mechanisms.  相似文献   

5.
Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity.  相似文献   

6.
The development of drug dispersions using solid lipids is a novel formulation strategy that can help address the challenges of poor drug solubility and systemic exposure after oral administration. The highly lipophilic and poorly water-soluble drug torcetrapib could be effectively formulated into solid lipid microparticles (SLMs) using an anti-solvent precipitation strategy. Acoustic milling was subsequently used to obtain solid lipid nanoparticles (SLNs). Torcetrapib was successfully incorporated into the lipid matrix in an amorphous state. Spherical SLMs with mean particle size of approximately 15–18 μm were produced with high drug encapsulation efficiency (>96%) while SLNs were produced with a mean particle size of 155 nm and excellent colloidal stability. The in vitro drug release and the in vivo absorption of the solid lipid micro- and nanoparticles after oral dosing in rats were evaluated against conventional crystalline drug powders as well as a spray dried amorphous polymer dispersion formulation. Interestingly, the in vitro drug release rate from the lipid particles could be tuned for immediate or extended release by controlling either the particle size or the precipitation temperature used when forming the drug-lipid particles. This change in the rate of drug release was manifested in vivo with changes in Tmax as well. In addition, in vivo pharmacokinetic studies revealed a significant increase (∼6 to 11-fold) in oral bioavailability in rats dosed with the SLMs and SLNs compared to conventional drug powders. Importantly, this formulation approach can be performed rapidly on a small scale, making it ideal as a formulation technology for use early in the drug discovery timeframe.Electronic supplementary materialThe online version of this article (doi:10.1208/s12249-015-0299-8) contains supplementary material, which is available to authorized users.KEY WORDS: anti-solvent precipitation, controlled release, formulation, nanoparticles, solid lipid  相似文献   

7.
BackgroundMangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE).MethodsNKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses.ResultstBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity.ConclusionsResults show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity.General significanceMangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.  相似文献   

8.
Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0−∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0−∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and AUC0−∞ 2082.49 ± 408.33 ng/ml h for the P-GFS. The bioavailability of P-GFS was nearly 284% and 181% of the GFS and Zhengyuan tablets respectively. In conclusion, the proliposomes significantly enhanced the drug bioavailability, absorption in the gastrointestinal tract and decreased its elimination time of GRe in rats and could be selectively applied for oral delivery of GFS.  相似文献   

9.
We reported that 2-(3,4-difluorophenylethynyl)-N6-3-chlorobenzyl (N)-methanocarba adenosine derivative 1 (MRS5698) binds selectively to human and mouse A3 adenosine receptors (A3ARs, Ki 3 nM). It is becoming an important pharmacological tool for defining A3AR effects and is orally active in a chronic neuropathic pain model. Here, we introduce a new synthetic route for MRS5698 from d-ribose, suitable for a scale-up on a multi-gram scale, and we measure in vitro and in vivo ADME-Tox parameters. MRS5698 was very stable in vitro, failed to inhibit CYPs at <10 μM, and was largely bound to plasma proteins. It was well tolerated in the rat at doses of ≤200 mg/kg i.p. A 1 mg/kg i.p. dose in the mouse displayed t1/2 of 1.09 h and plasma Cmax of 204 nM at 1 h with an AUC of 213 ng × h/mL. CACO-2 bidirectional transport studies suggested intestinal efflux of MRS5698 (efflux ratio 86). Although the oral %F is only 5 %, the beneficial effect to reverse pain lasted for at least 2 h in the CCI model in rats, using the same vehicle for oral administration of a high dose. The stability, low toxicity, lack of CYP interaction, pharmacokinetic half-life, and in vivo efficacy suggest that MRS5698 is a preferred compound for further consideration as a treatment for neuropathic pain.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9459-2) contains supplementary material, which is available to authorized users.  相似文献   

10.
The goal of elimination of the human filariases would benefit greatly from the use of a macrofilaricidal agent. In vivo trials in humans and many experimental animal models suggest that flubendazole (FLBZ) is a highly efficacious macrofilaricide. However, since serious injection site reactions were reported in humans after parenteral FLBZ administration, the search for alternative pharmaceutical strategies to improve the systemic availability of FLBZ and its metabolites has acquired urgency in both human and veterinary medicine. The goal of the current work was to compare the systemic exposure of FLBZ formulated as either an aqueous hydroxypropyl-β-cyclodextrin (CD) or aqueous carboxymethyl cellulose (CMC) suspension or a Tween 80-based formulation (TWEEN) in rats and jirds (Meriones unguiculatus). Healthy animals of both species were allocated into four experimental groups of 44 animals each: FLBZ-CDoral and FLBZ-CDsc, treated with the FLBZ-CD formulation by the oral or subcutaneous routes, respectively; FLBZ-TWEENsc, dosed subcutaneously with the FLBZ-TWEEN formulation; and FLBZ-CMCoral, treated orally with the FLBZ suspension. The FLBZ dose was 5 mg/kg. FLBZ and its hydrolyzed (H-FLBZ) and reduced (R-FLBZ) metabolites were recovered in plasma samples collected from rats and jirds treated with the different FLBZ formulations. In both species, FLBZ parent drug was the main analyte recovered in the bloodstream. In rats, FLBZ systemic exposure (AUC0-LOQ) was significantly (P<0.05) higher after the FLBZ-CD treatments, both oral (4.8±0.9 µg.h/mL) and subcutaneous (7.3±0.6 µg.h/mL), compared to that observed after oral administration of FLBZ-CMC suspension (0.93±0.2 µg.h/mL). The same differences were observed in jirds. In both species, parenteral administration of FLBZ-TWEEN did not improve the systemic availability of FLBZ compared to FLBZ-CDoral treatment. In conclusion, formulation approaches that enhance the availability of flubendazole in the rat and jird may have therapeutic implications for a drug with poor or erratic bioavailability.  相似文献   

11.
Mangiferin has been extensively applied in different fields due to its anti-inflammatory properties. However, the precise mechanism used by mangiferin on lipopolysaccharide (LPS)-induced inflammation has not been elucidated. Here, we discuss the potential mechanism of mangiferin during a LPS-induced brain injury. Brain injury was induced in ICR mice via intraperitoneal LPS injection (5 mg/kg). Open- and closed-field tests were used to detect the behaviors of mice, while immunoblotting was performed to measure the expression of interleukin-6 (IL-6) and cystathionine-b-synthase (CBS) in the hippocampus after mangiferin was orally administered (p.o.). Mangiferin relieved LPS-induced sickness 6 and 24 h after LPS injection; in addition, this compound suppressed LPS-induced IL-6 production after 24 h of LPS induction as well as the downregulation of LPS-induced CBS expression after 6 and 24 h of LPS treatment in the hippocampus. Therefore, mangiferin attenuated sickness behavior by regulating the expression of IL-6 and CBS.  相似文献   

12.
Mangiferin, a polyphenol compound of C-glucoside, is well-known for its anti-inflammatory, antioxidant, anticancer, antidiabetic and cognitive enhancement properties. In this study, we investigated the neuroprotective effect of mangiferin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD), which is most popular and widely used to evaluate therapeutic implications of new protective agents. Male C57BL/6 mice were orally treated with mangiferin (10, 20 and 40 mg/kg body wt.) for 14 days and from 10th day onwards MPTP (30 mg/kg, i.p.) was injected for last 5 days. MPTP treatment leads to enhanced oxidative stress, induction of apoptosis (upregulates the expression of Bax, proapoptotic protein and downregulates the expression of anti-apoptotic marker Bcl-2), and loss of dopominergic neurons which results in motor impairments. Results of our study confirmed that mangiferin prevented MPTP-induced behavioral deficits, oxidative stress, apoptosis, dopaminergic neuronal degeneration and dopamine depletion. Taken together, we conclude that mangiferin attenuates the dopaminergic neurodegeneration mainly through its potent antioxidant and antiapoptotic properties.  相似文献   

13.
AJS is the code name of an untitled novel medicative compound synthesized by the Tasly Holding Group Company (Tianjin, China) based on the structure of cinnamamide, which is one of the Biopharmaceutics Classification System (BCS) class II drugs. The drug has better antidepressant effect, achieved by acting on the 5-hydroxytryptamine receptor. However, the therapeutic effects of the drug are compromised due to its poor water solubility and lower bioavailability. Herein, a self-microemulsifying drug delivery system (SMEDDS) was developed to improve its solubility and oral bioavailability. AJS-SMEDDS formulation was optimized in terms of drug solubility in the excipients, droplet size, stability, and drug precipitation using a pseudo-ternary diagram. The pharmacokinetic study was performed in rats, and the drug concentration in plasma samples was assayed using the high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS) method. The optimized formulation for SMEDDS has a composition of castor oil 24.5%, Labrasol 28.6%, Cremphor EL 40.8%, and Transcutol HP 2.7% (co-surfactant). No drug precipitation or phase separation was observed from the optimized formulation after 3 months of storing at 25°C. The droplet size of microemulsion formed by the optimized formulation was 26.08 ± 1.68 nm, and the zeta potential was −2.76 mV. The oral bioavailability of AJS-SMEDDS was increased by 3.4- and 35.9-fold, respectively, compared with the solid dispersion and cyclodextrin inclusion; meanwhile, the Cmax of AJS-SMEDDS was about 2- and 40-fold as great as the two controls, respectively. In summary, the present SMEDDS enhanced oral bioavailability of AJS and was a promising strategy to orally deliver the drug.KEY WORDS: bioavailability, HPLC-MS/MS, self-microemulsifying drug delivery system, solubilization, stability  相似文献   

14.
One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction.  相似文献   

15.
16.
The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.KEY WORDS: bioavailability, intranasal, nanoparticles, olanzapine, pharmacokinetic  相似文献   

17.
Salacia oblonga, an inhabitant of tropical regions has been used in traditional Indian medicinal systems. Phytochemicals were extracted in methanol from the plant and analyzed for various biological activities. The results of biochemical tests for total phenolics (297 ± 0.005 and 275 ± 0.006) and flavonoids (95 ± 0.004 and 61.6 ± 0.004) in the aerial and root parts were indicated as Gallic acid and quercetin equivalents respectively. The Aerial and root extracts showed strong reducing ability based on reducing power and FRAP assays. The extracts exhibited significant IC50 values in DPPH, super oxide and nitric oxide radical scavenging assays. The extracts displayed low IC50 values (<50 μg/ml) when assessed for antiproliferative activity against breast cancer cell lines using the MTT assay. GC-MS analysis of methanolic extracts have revealed the presence of compounds viz. n-Hexadecanoic acid, N-Methoxy-N-methylacetamide, Ursa-9(11), 12-dien-3-ol, Gamma-sitosterol etc., that might be potential candidates for the biological activity exhibited by the extract.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-015-0317-z) contains supplementary material, which is available to authorized users.Keyword: Salacia oblonga, Antioxidant activity, Free radical scavenging activity, Reactive oxygen species, Antiproliferative activity  相似文献   

18.

Background

To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.25 Gy/fraction and 2.5 Gy/fraction to the pelvic nodes, vesicles and prostate, respectively (SIBIMRT).

Materials and methods

The equivalent dose at fractionation of 2 Gy (EQD2), calculated using the linear quadratic model with α/βprostate = 1.5 Gy, was the same for both treatment strategies. For comparison the parameters employed were D95, mean dose and Tumour Control Probabilities for prostate PTV and D15, D25, D35, D50, mean dose and Normal Tissue Complication Probabilities for the rectum and bladder, with physical doses converted to EQD2. Parameters were obtained for α/βprostate = 1.5, 3 and 10 Gy and for α/βoar = 1, 2, 3, 4, 6 and 8.

Results

For prostate PTV, both treatment strategies are equivalent for α/βprostate = 1.5 Gy but for higher α/βprostate, EQD2 and TCP, decrease for the SIBIMRT technique. For the rectum and bladder when α/βoar ≤ 2 Gy, EQD2 and NTCP are lower for the SIMRT technique or equal in both techniques. For α/βoar ≥ 2–3 Gy, EQD2 and NTCP increase for the SIMRT treatment.

Conclusions

A comparison between two radiotherapy techniques is presented. The SIBIMRT technique reduces EQD2 and NTCP for α/βoar from 2 to 8 Gy.  相似文献   

19.
Tan Q  Liu S  Chen X  Wu M  Wang H  Yin H  He D  Xiong H  Zhang J 《AAPS PharmSciTech》2012,13(2):534-547
A novel evodiamine (EVO)-phospholipid complex (EPLC) was designed to improve the bioavailability of EVO. A central composite design approach was employed for process optimization. EPLC were characterized by differential scanning calorimetry, ultraviolet spectroscopy, Fourier transformed infrared spectroscopy, 1H-NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectroscopy, apparent solubility, and dissolution rate. After oral administration of EPLC, the concentrations of EVO at different time points were determined by high-performance liquid chromatography. The optimal formulation for EPLC was obtained where the values of X1, X2, and X3 were 2, 0.5, and 2.5 mg/mL, respectively. The average particle size and zeta potential of EPLC with the optimized formulation were 246.1 nm and −26.94 mV, respectively. The EVO and phospholipids in the EPLC were associated with non-covalent interactions. The solubility of EPLC in water and the dissolution rate of EPLC in phosphate-buffered solution (pH 6.8) were substantially enhanced. The plasma EVO concentration-time curves of EPLC and free EVO were both in accordance with the two-compartment model. The peak concentration and AUC0−∞ of EPLC were increased, and the relative bioavailability was significantly increased to 218.82 % compared with that of EVO.KEY WORDS: bioavailability, evodiamine, phospholipid complex, process optimization  相似文献   

20.
In this paper, we report the estimates of outcrossing rates using open-pollinated progeny arrays of 40 BC1 individuals of Jatropha developed as a result of interspecific hybridization between J. curcas and J. integerrima. For analysis PCR-based dominant AFLP and codominant SSR markers were used. The multilocus outcrossing rate (tm) estimated from AFLP markers (0.892 ± 0.112) are almost in the same range with SSR (0.884 ± 0.293) markers which indicate a high level of heterozygosity. A low value of inbreeding coefficient (F) also points out to the fact that outcrossing was the prevalent mode of reproduction in Jatropha and suggests maintenance of adequate genetic variability within families.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-015-0318-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号