首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Serum-free supernatants from the human melanoma cell line G361 contain a factor that can potently suppress the generation of tumouricidal lymphokine-activated killer (LAK) cells in response to interleukin-2. To characterise the suppressive factor of tumour origin we performed a number of physicochemical and functional comparisons with another immunosuppressive protein, transforming growth factor (TGF). The bioactivity of tumour-derived suppressor factor (TDSF), assayed by suppression of LAK cell generation, was unaffected by a reducing agent but lost when denatured with a chaotropic agent. In contrast, TGF was inactivated by reduction but not denaturation. TDSF lost bioactivity in conditions of pH less than 4, whereas TGF showed no loss of activity. The TDSF moiety has an estimated pI of 4.3 and a molecular mass of 69–87 kDa. This differs from published values of pI 9.5, and 25 kDa molecular mass for TGF. Anti-TGF antiserum reversed the effects of TGF but did not affect the suppression of LAK cell generation caused by TDSF. These findings provide compelling evidence that the TDSF moiety is not TGF, and may be a novel immunoregulatory cytokine.  相似文献   

2.
Genome-wide gene expression was comparatively investigated in early-passage rheumatoid arthritis (RA) and osteoarthritis (OA) synovial fibroblasts (SFBs; n = 6 each) using oligonucleotide microarrays; mRNA/protein data were validated by quantitative PCR (qPCR) and western blotting and immunohistochemistry, respectively. Gene set enrichment analysis (GSEA) of the microarray data suggested constitutive upregulation of components of the transforming growth factor (TGF)-β pathway in RA SFBs, with 2 hits in the top 30 regulated pathways. The growth factor TGF-β1, its receptor TGFBR1, the TGF-β binding proteins LTBP1/2, the TGF-β-releasing thrombospondin 1 (THBS1), the negative effector SkiL, and the smad-associated molecule SARA were upregulated in RA SFBs compared to OA SFBs, whereas TGF-β2 was downregulated. Upregulation of TGF-β1 and THBS1 mRNA (both positively correlated with clinical markers of disease activity/severity) and downregulation of TGF-β2 mRNA in RA SFBs were confirmed by qPCR. TGFBR1 mRNA (only numerically upregulated in RA SFBs) and SkiL mRNA were not differentially expressed. At the protein level, TGF-β1 showed a slightly higher expression, and the signal-transducing TGFBR1 and the TGF-β-activating THBS1 a significantly higher expression in RA SFBs than in OA SFBs. Consistent with the upregulated TGF-β pathway in RA SFBs, stimulation with TGF-β1 resulted in a significantly enhanced expression of matrix-metalloproteinase (MMP)-11 mRNA and protein in RA SFBs, but not in OA SFBs. In conclusion, RA SFBs show broad, constitutive alterations of the TGF-β pathway. The abundance of TGF-β, in conjunction with an augmented mRNA and/or protein expression of TGF-β-releasing THBS1 and TGFBR1, suggests a pathogenetic role of TGF-β-induced effects on SFBs in RA, for example, the augmentation of MMP-mediated matrix degradation/remodeling.  相似文献   

3.
4.
Immaculate and complete palatal seam disintegration, which takes place at the last phase of palate development, is essential for normal palate development. And in absence of palatal midline epithelial seam (MES) disintegration, cleft palate may arise. It has been established that transforming growth factor (TGF) β induces both epithelial mesenchymal transition (EMT) and/or apoptosis during MES disintegration. It is likely that MES might cease cell cycle to facilitate cellular changes prior to undergoing transformation or apoptosis, which has never been studied before. This study was designed to explore whether TGFβ, which is crucial for palatal MES disintegration, is capable of inducing cell cycle arrest. We studied the effects of TGFβ1 and TGFβ3, potent negative regulators of the cell cycle, on p15ink4b activity in MES cells. We surprisingly found that TGFβ1, but not TGFβ3, plays a major role in activation of the p15ink4b gene. In contrast, following successful cell cycle arrest by TGFβ1, it is TGFβ3 but not TGFβ1 that causes later cellular morphogenesis, such as EMT and apoptosis. Since TGFβ signaling activates Smads, we analyzed the roles of three Smad binding elements (SBEs) on the p15ink4b mouse promoter by site specific mutagenesis and found that these binding sites are functional. The ChIP assay demonstrated that TGFβ1, not TGFβ3, promotes Smad4 binding to two 5' terminal SBEs but not the 3' terminal site. Thus, TGFβ1 and TGFβ3 play separate yet complimentary roles in achieving cell cycle arrest and EMT/apoptosis and cell cycle arrest is a prerequisite for later cellular changes.  相似文献   

5.
6.
7.
8.
9.

Introduction

Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region.

Methods

To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry.

Results

Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region.

Conclusions

Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.  相似文献   

10.
11.
12.
13.
Astragalus polysaccharides (APS), extracted from the root of Astragalus membranaceus, a traditional Chinese medicinal herb, have extensive pharmacological and strong immunomodulatory effects. In this study, the potential adjuvant effect of APS on humoral and cellular immune responses to hepatitis B subunit vaccine was investigated. Coadministration of APS with recombinant hepatitis B surface antigen significantly increased antigen-specific antibody production, T-cell proliferation and CTL (cytotoxic T lymphocyte) activity. Production of interferon-γ (IFN-γ), interleukin-2 (IL-2) and IL-4 in CD4(+) T cells and of IFN-γ in CD8(+) T cells were dramatically increased. Furthermore, expression of the genes PFP, GraB, Fas L and Fas were up-regulated; interestingly, expression of transforming growth factor β (TGF-β) and the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) were down-regulated. Expression of Toll-like receptor 4 (TLR4) was significantly increased by administration of APS. Together, these results suggest that APS is a potent adjuvant for the hepatitis B subunit vaccine and can enhance both humoral and cellular immune responses via activating the TLR4 signaling pathway and inhibit the expression of TGF-β and frequency of Treg cells.  相似文献   

14.
The increased activation of osteoclasts is the major manifestation of several lytic bone diseases, including osteoporosis, rheumatoid arthritis, aseptic loosening of orthopedic implants, Paget disease and malignant bone diseases. One important bone-protective therapy in these diseases focuses on the inhibition of osteoclast differentiation and resorptive function. Given that the deleterious side-effects of currently available drugs, it is beneficial to search for effective and safe medications from natural compounds. Cepharanthine (CEP) is a compound extracted from Stephania japonica and has been found to have antioxidant and anti-inflammatory effects. In this study, we found that CEP inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone-resorbing activities using osteoclastogenesis and bone resorption assay. By polymerase chain reaction, we also found that CEP inhibited the expression of osteoclast-differentiation marker genes including Ctsk, Calcr, Atp6v0d2, Mmp9 and Nfatc1. Mechanistic analyses including Western blot and luciferase reporter assay revealed that CEP inhibited RANKL-induced activation of NF-κB and nuclear factor of activated T-cell, which are essential for the formation of osteoclast. Collectively, these data suggested that CEP can potentially be used as an alternative therapy for preventing or treating osteolytic diseases.  相似文献   

15.
16.
Gene expression and immunohistochemical localization of epidermal growth factor (EGF), transforming growth factor-α (TGF-α), and epidermal growth factor receptor (EGF-R) were compared between the endometrium of bitches (Canis familiaris) with pyometra accompanied by cystic endometrial hyperplasia (CEH) and that of healthy bitches at similar stages of the estrous cycle. In normal bitches, endometrial TGF-α mRNA levels were highest at proestrus and gradually decreased as the cycle progressed to anestrus. Epidermal growth factor receptor mRNA levels were not significantly affected by the stage of the estrous cycle. Epidermal growth factor mRNA levels were higher at Day 35 of diestrus than at other stages of the estrous cycle (P < 0.05). In bitches with pyometra, endometrial TGF-α and EGF-R mRNA levels did not differ significantly from those at diestrus in normal bitches, but EGF mRNA levels were lower than those at Day 35 of diestrus in normal bitches (P < 0.05). In normal bitches, positive immunohistochemical staining for TGF-α, EGF, and EGF-R was mainly present in the glandular and luminal epithelial cells of the endometrium. In contrast, in bitches with pyometra, immunoreactivity for EGF was clearly present in endometrial stromal cells. Inflammatory cells that had infiltrated the endometrial stroma stained strongly for TGF-α and EGF-R. Luminal and glandular epithelial cells also stained positive for EGF-R. In conclusion, expression of TGF-α by inflammatory cells and a low level of expression and differential localization of EGF may be involved in aberrant growth of endometrial glands and development of CEH.  相似文献   

17.
18.
Summary Normal human mammary epithelial cells (HMEC) from different individual reduction mammoplasty specimens were all growth inhibited, and showed a flattened, elongated morphology in response to human recombinant transforming growth factor β1 (TGFβ). The degree of growth inhibition varied among specimens, but none of the normal HMEC maintained growth in the continued presence of TGFβ. The degree of growth inhibition also varied with cell age in vitro, cells closer to senescence being more sensitive. TGFβ sensitivity was additionally assayed in two established cell lines derived from one of the reduction mammoplasty specimens after exposure to benzo(a)pyrene. Although varying degrees of growth inhibition and morphologic changes were observed in the cell lines, both lines contained populations that maintained active growth in the presence of TGFβ. Subclones of these lines demonstrated a great plasticity in their growth response to TGFβ, with individual clones ranging from strongly growth inhibited to nearly unaffected. These results suggest that multiple factors influence the extent of TGFβ-induced growth effects on both normal and transformed mammary epithelial cells, and that some of these factors may act through epigenetic mechanisms. This work was supported by CA24844 from the National Institutes of Health, Bethesda, MD, and the Office of Energy Research, Office of Health and Environmental Research of the U.S. Department of Energy under contract DE-AC03-76SF00098.  相似文献   

19.
20.

Background  

β-catenin and transforming growth factor β signaling are activated in fibroblasts during wound healing. Both signaling pathways positively regulate fibroblast proliferation during this reparative process, and the effect of transforming growth factor β is partially mediated by β-catenin. Other cellular processes, such as cell motility and the induction of extracellular matrix contraction, also play important roles during wound repair. We examined the function of β-catenin and its interaction with transforming growth factor β in cell motility and the induction of collagen lattice contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号