首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japanese barberry, Berberis thunbergii DC., has become a prominent exotic species in deciduous forests throughout the eastern and midwestern US. Populations range from small plants occurring at low densities to dense, impenetrable thickets of plants with up to 40 stems/individual. A study was undertaken at Morristown National Historical Park in New Jersey to document plant densities, plant size, recruitment through vegetative processes of new shoot initiation and clonal spread and recruitment from seedling establishment, and mortality of stems and plants. Nearly 2000 shoots on 370 plants were individually marked and followed for two growing seasons, and over 1000 seedlings were also individually marked and followed. Populations vary much more in total shoots/area than they do in plant individuals/area, or in mean plant size (shoots/plant), as even the sparse populations have a few large individuals. Shoot mortality is less than new shoot initiation, but most plants do not change in size or change by small numbers of stems. However, the number of new shoots per plant increases as plant size increases. Once plants have three stems, they suffer little or no mortality. Seedling establishment is proportional to the density of shoots, so that as plants grow in size, local recruitment from seed increases. Large numbers of seedlings, and a survival rate of 10%, combine to make seedling recruitment a major component of population increase. The combination of multiple forms of vegetative and seed-based population growth, and the very low rates of plant mortality due to the multi-stemmed growth form explains the ability of this invasive species to rapidly produce dense, persistent populations.  相似文献   

2.
Aspects of the engineering theory treating the elastic stability of vertical stems and cantilevered leaves supporting their own weight and additional wind-induced forces (drag) are reviewed in light of biomechanical studies of living and fossil terrestrial plant species. The maximum height to which arborescent species can grow before their stems elastically buckle under their own weight is estimated by means of the Euler-Greenhill formula which states that the critical buckling height scales as the 1/3 power of plant tissue-stiffness normalized with respect to tissue bulk density and as the 2/3 power of stem diameter. Data drawn from living plants indicate that progressively taller plant species employ stiffer and lighter-weight plant tissues as the principal stiffening agent in their vertical stems. The elastic stability of plants subjected to high lateral wind-loadings is governed by the drag torque (the product of the drag force and the height above ground at which this force is applied), which cannot exceed the gravitational bending moment (the product of the weight of aerial organs and the lever arm measured at the base of the plant). Data from living plants indicate that the largest arborescent plant species rely on massive trunks and broad, horizontally expansive root crowns to resist drag torques. The drag on the canopies of these plants is also reduced by highly flexible stems and leaves composed of tissues that twist and bend more easily than tissues used to stiffen older, more proximal stems. A brief review of the fossil record suggests that modifications in stem, leaf, and root morphology and anatomy capable of simultaneously coping with self-weight and wind-induced drag forces evolved by Devonian times, suggesting that natural selection acting on the elastic stability of sporophytes occurred early in the history of terrestrial plants.  相似文献   

3.
Summary The flowering of pin (long-styled) and thrum (short-styled) plants in populations of Lithospermum caroliniense (Walt.) McMill. was synchronized and both morphs had an extended period of flowering. The plants produced a large number of flowers that did not set seeds — hence the seed production per plant was very low. The seeds showed strong dormancy. Even under natural conditions, only 19% of the seeds produced seedlings. However, seedling survival was relatively high probably due to rapid root growth to deeper layers where moisture was not limiting. The probability of survival of seedlings increased with age; survival of seedlings, juveniles and adults after 2 years was 39, 68 and 98%, respectively. The dry weight of roots increased from 10% in June to 42% in September whereas the proportion of biomass contained in leaves, stems and hypocotyls decreased with age.  相似文献   

4.
Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution. Drag increased at a power of 1.3–1.9 with velocity and 0.59–0.77 with biomass in 75% of the measurements. Velocity and biomass interacted because higher velocity causes reconfiguration and greater internal shelter to unimpeded flow and higher biomass enhances shelter among neighbouring shoots. Increase of drag with velocity did not differ systematically among inherently streamlined or non-streamlined species while increase of drag with biomass was smallest among non-streamlined shoots which provide greater mutual shelter. At low shoot density, inherently streamlined species usually experienced the lowest drag conducive to colonisation and growth in swift flow. At high shoot density, no systematic differences in drag existed between the two morphologies. No clear relationship existed between drag forces, morphology and field distribution of species as a function of current velocity probably because a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality. Handling editor: S. M. Thomaz  相似文献   

5.
J. Schutten  A. J. Davy 《Oecologia》2000,123(4):445-452
Aquatic macrophytes are important in stabilising moderately eutrophic, shallow freshwater lakes in the clear-water state. The failure of macrophyte recovery in lakes with very soft, highly organic sediments that have been restored to clear water by biomanipulation (e.g. in the Norfolk Broads, UK) has suggested that the physical stability of the sediment may limit plant establishment. Hydraulic forces from water currents may be sufficient to break or remove plants. Our aim was to develop a simple model that could predict these forces from plant biomass, current velocity and plant form. We used an experimental flume to measure the hydraulic forces acting on shoots of 18 species of aquatic macrophyte of varying size and morphology. The hydraulic drag on the shoots was regressed on a theoretically derived predictor (shoot biomass × current velocity1.5). Such linear regressions proved to be highly significant for most species. The slopes of these lines represent species-specific, hydraulic roughness factors that are analogous to classical drag coefficients. Shoot architecture parameters describing leaf and shoot shape had significant effects on the hydraulic roughness factor. Leaf width and shoot stiffness individually did not have a significant influence, but in combination with shoot shape they were significant. This hydraulic model was validated for a subset of species using measurements from an independent set of shoots. When measured and predicted hydraulic forces were compared, the fit was generally very good, except for two species with morphological variations. This simple model, together with the plant-specific factors, provides a basis for predicting the hydraulic forces acting on the root systems of macrophytes under field conditions. This information should allow prediction of the physical stability of individual plants, as an aid to shallow-lake management. Received: 11 March 1999 / Accepted: 18 January 2000  相似文献   

6.
Phytophagous insects of estuarine tidal marshes which live inside their host plants, are, in contrast to the plants, not directly exposed to the estuarine salinity gradient. Previous field studies, however, have shown that patterns of growth and development ofAgapanthia villosoviridescens larvae, stem-borers of the halophyteAster tripolium, gradually change on tidal marshes along the Westerschelde estuary (HEMMINGA and VAN SOELEN, 1988). In the present study we carried out a laboratory experiment in which we followed growth ofA. villosoviridescens larvae from two different Westerschelde tidal marshes; the larvae either were kept inA. tripolium stems from their own marsh, or they were kept in stems from the other marsh. It was found that larvae from both tidal marshes showed larger weight increases inA. tripolium stems from the least saline marsh. Apparently, differences in host plant quality between stems of the two marshes exist. The results lend support to the hypothesis that growth and development, and distribution and abundance of phytophagous insects in estuarine tidal marshes may be indirectly influenced by estuarine gradients,via the host plant quality which changes along the estuary.  相似文献   

7.
This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on floodprone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged or completely submerged, with shoots in light or in darkness, in a controlled environment. Net photosynthesis (PN) when underwater, at a range of dissolved CO2 concentrations, was measured by monitoring O2 production rates by excised stems. The bulky nature and apparently low volume of gas-filled spaces of the succulent stems resulted in relatively high radial resistance to gas diffusion. At ambient CO2, quasi-steady state rates of PN by excised succulent stems were estimated to be close to zero; nevertheless, in intact plants, underwater photosynthesis provided O2 to tissues and led to radial O2 loss (ROL) from the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. approximately 10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during the night. At night, pO2 in the roots remained higher than in the succulent stems, especially for a root with the basal portion in the floodwater. At sunrise, the pO2 increased in the succulent stems within minutes. In the roots, changes in the pO2 lagged behind those in the succulent stems. In summary, photosynthesis in stems of submerged plants increased the pO2 in the shoots and roots so that tissues experience diurnal changes in the pO2, but O2 from the H2O column also entered submerged plants.  相似文献   

8.
Effect of plant interaction on wind-induced crop motion   总被引:4,自引:0,他引:4  
Plant motion due to wind affects plant growth, a phenomenon called thigmomorphogenesis. Despite intensive studies of the turbulence over plant canopies, the study of plant motion induced by wind has often been limited to individual trees or cereal plants. Few models of global canopy motions are available. Moreover the numerical analysis of models that are based on individual stems becomes time consuming when dealing with crops. A model of motion within the canopies is proposed here using a wave propagation equation within a homogenized continuous medium, and a forcing function representing turbulent gusts advected over the canopy. This model is derived from a discrete model of a set of plant shoots represented as individual oscillators, including elastic contacts between shoots. Such contacts induce nonlinearities into the wave equation. A new experimental method to measure stem dynamical properties and elastic collision properties is presented with an illustration on alfalfa stems. Results obtained modeling plant motions in an alfalfa crop are presented.  相似文献   

9.
NIKLAS  KARL J. 《Annals of botany》1998,82(2):147-156
The herbaceous dicot speciesCapsella bursa-pastoris(Cruciferae)was used to determine the influence of chronic mechanical perturbationon the biomass allocation pattern (i.e. dry weight distributionamong roots, stems and reproductive structures) and the mechanicalproperties of roots and stems (i.e. tensile breaking stressand Young's modulus). It was hypothesized that mechanicallystimulated plants would allocate more of their total biomassto root systems and less to shoots compared to control plantsand that the breaking stress (a measure of strength) and Young'smodulus (a measure of material stiffness) would increase forroots and decrease for stems because these responses would adaptivelyreduce the bending moment at the base of shoots and increasethe anchorage strength of root systems. It was also hypothesizedthat mechanical perturbation would maladaptively reduce therelative fitness of individuals by reducing biomass allocationto their reproductive organs and the ability to broadcast seedsby means of elastic stem flexure. These hypotheses were testedby vibrating cultivated plants for 60 s every day during thecourse of growth to maturity and comparing their dry weightdistributions and the mechanical properties of their body parts(measured in tension) to those of undisturbed control plants.Based on a total of 51 experimentally manipulated and 44 controlplants for which mechanical properties were successfully tested,chronic organ flexure resulted in more massive root systemsand less massive vegetative shoots, increased the magnitudesof root breaking stress and Young's modulus and had the reverseeffect on stems, reduced the dry weight of reproductive structuresat maturity, delayed the formation of the first mature flowerand fruit, and accelerated the on-set of plant senescence comparedto control plants. These responses to chronic organ flexureare interpreted to be vegetatively adaptive, since they reducethe probability of stem and root failure as a consequence ofwind-pressure or foraging, and to be reproductively maladaptive,since they reduce reproductive effort and the ability to mechanicallydischarge seeds.Copyright 1998 Annals of Botany Company Adaptation, biomass allocation, biomechanics, elastic properties, roots, stems, thigmomorphogenesis.  相似文献   

10.
Salt stress is considered to be a major limiting factor for plant growth and crop productivity. Salt injuries in plants are mostly due to excess Na+ entry. A possible survival strategy of plants under saline environments is the effective compartmentation of excess Na+ by sequestering Na+ in roots and inhibiting transport of Na+ from roots to shoots. Our previous study showed that exogenous application of polyamines (PAs) could attenuate salt injuries in barley plants. In order to further understand such protective roles of PAs against salt stress, the effects of spermidine (Spd) on sodium and potassium distribution in barley (Hordeum vulgare L.) seedlings under saline conditions were investigated. The results showed that exogenous application of Spd induced reductions in Na+ levels in roots and shoots with comparison of NaCl-treated plants, while no significant changes in K+ levels were observed. Correspondingly, the plants treated with Spd exogenously maintained high values of [K+]/[Na+] as compared with salt-stressed plants. Moreover, it was shown by X-ray microanalysis that K+ and Na+ accumulated mainly in the exodermal intercellular space and cortical cells of roots under salinity stress, and low accumulation was observed in endodermal cells and stelar parenchyma, indicating Casparian bands possibly act as ion transport barriers. Most importantly, Spd treatment further strengthened this barrier effects, leading to inhibition of Na+ transport into shoots. These results suggest that, by reinforcing barrier effects of Casparian bands, exogenous Spd inhibits Na+ transport from roots to shoots under conditions of high salinity which are beneficial for attenuating salt injuries in barley seedlings.  相似文献   

11.
? Premise of the study: Intertidal macroalgae must resist extreme hydrodynamic forces imposed by crashing waves. How does frond flexibility mitigate drag, and how does flexibility affect predictions of drag and dislodgement in the field? ? Methods: We characterized flexible reconfiguration of six seaweed species in a recirculating water flume, documenting both shape change and area reduction as fronds reorient. We then used a high-speed gravity-accelerated water flume to test our ability to predict drag under waves based on extrapolations of drag recorded at slower speeds. We compared dislodgement forces to drag forces predicted from slow- and high-speed data to generate new predictions of survivorship and maximum sustainable frond size along wave-swept shores. ? Key results: Bladed algae were generally "shape changers", limiting drag by reducing drag coefficients, whereas the branched alga Calliarthron was an "area reducer", limiting drag by reducing projected area in flow. Drag predictions often underestimated actual drag measurements at high speeds, suggesting that slow-speed data may not reflect the performance of flexible seaweeds under breaking waves. Several seaweeds were predicted to dislodge at similar combinations of velocity and frond size, suggesting common scaling factors of dislodgement strength and drag. ? Conclusions: Changing shape and reducing projected area in flow are two distinct strategies employed by flexible seaweeds to resist drag. Flexible reconfiguration contributes to the uncertainty of drag extrapolation, and researchers should use caution when predicting drag and dislodgement of seaweeds in the field.  相似文献   

12.
External mechanical forces resulting from the pressure exerted by wind or water movement are a major stress factor for plants and may cause regular disturbances in many ecosystems. A plant's ability to resist these forces relies either on minimizing the forces encountered by the plant (avoidance strategy), or on maximizing its resistance to breakage (tolerance strategy). We investigated plant resistance strategies using aquatic vegetation as a model, and examined whether avoidance and tolerance are negatively correlated. We tested the avoidance-tolerance correlation across 28 species using a phylogenetically corrected analysis, after construction of a molecular phylogeny for the species considered. Different species demonstrated contrasting avoidance and tolerance and we demonstrated a significant negative relationship between the two strategies, which suggests an avoidance-tolerance trade-off. Negative relationships may result from costs that each strategy incurs or from constraints imposed by physical laws on plant tissues. The existence of such a trade-off has important ecological and evolutionary consequences. It would lead to constraints on the evolution and variation of both strategies, possibly limiting their evolution and may constrain many morphological, anatomical and architectural traits that underlie avoidance and tolerance.  相似文献   

13.
Aims In eroded lands of the French Southern Alps, burial of early established seedlings under marly sediment weakens the effect of vegetation on soil stabilization and sediment trapping. Therefore, this protective role is largely dependent on species' resistance to burial, and the understanding of species' tolerance to this environmental disturbance is highly valuable for basic knowledge on plant succession and for ecological restoration purposes.Methods The response of five woody species with contrasting ecological requirements and natural habitats—three tree species, Pinus nigra, Robinia pseudoacacia and Acer campestre, and two shrubs, Ononis fruticosa and Hippophae rhamnoides —to experimental burial under marly sediment was studied. Seedlings were exposed to three burial levels: no burial (control), partial burial (50% of seedling height) and complete burial (100% of seedling height). Burial tolerance was evaluated based on seedling survival, height and biomass. Biomass allocation to shoots and roots and soluble sugar and starch contents in roots and stems were measured to identify plant traits that determine species response to burial.Important findings All species survived partial burial but only A. campestre seedlings emerged from complete burial. Tree species were more tolerant to burial and buried plants showed no significant differences with control. The two shrubs were found less tolerant and buried plants showed slower growth than controls. The results showed that species response was not related to initial soluble and starch content in roots and stems, but instead to biomass allocation pattern flexibility.  相似文献   

14.
The grass shrimp Palaemonetes pugio, a species common to Spartina alterniflora-dominated marshes, may be sensitive to the invasion of the common reed Phragmites australis in northeastern US salt marshes. We examined two questions: (1) Do grass shrimp have a preference for the native plant over the non-native plant? (2) Are grass shrimp more effective foragers on P. australis? We tested the first hypothesis by comparing the amount of time shrimp spend in physical contact with the plant types over a 1-h period. Shrimp were observed under different arrangements of vegetation to control for differences in conspicuous structural features. Additionally, the amount of time shrimp spent foraging on S. alterniflora and P. australis shoots was compared to determine if shrimp graze more often on S. alterniflora. Shrimp spent significantly more time in contact with S. alterniflora only when plant types were grouped at opposite ends of aquaria, but did not exhibit a foraging preference for this plant type. To address our second question, we investigated the effects of shrimp foraging on stem epifauna, an assemblage of semi-aquatic invertebrates associated with macrophyte shoots. Previous research showed that P. australis supports a lower density of stem-dwelling epifauna relative to S. alterniflora. We hypothesized that the primary grazer of this community, P. pugio, can forage on P. australis stems more effectively due to structural differences between the two plants, causing the lower abundance of epifauna through top-down effects. We exposed individual shoots inhabited by epifauna to shrimp and compared faunal densities on exposed shoots to densities on control shoots after 18 h. The reduction of epifauna by predation was proportional on the two plant types. Therefore, top-down effects can be ruled out as an explanation for the patchy distribution of epifauna observed in P. australis–S. alterniflora marshes.  相似文献   

15.
Abstract The upper and lower limits of the distribution of mature Avicennia marina lie between mean high water and mean sea level in open estuaries in southeastern Australia. Newly established seedlings are highly variable in abundance, but are rarely found in the saltmarsh or on mudflats. Their distribution is unlikely to be limited by dispersal because propagules disperse into the saltmarsh and to intertidal mudflats, but their establishment may be limited by physicochemical conditions, interspecific competition and predation. The model that physicochemical conditions control the intertidal limits of establishment of seedlings was accepted for propagules stranding in the saltmarsh but rejected for those stranding on mudflats. No seedlings established on saltmarsh sediments but similar numbers of seedlings established within light gaps in adult mangrove stands and on intertidal mudflats. The model that interspecific interaction with freeliving macroalgae (Hormosira banksii) reduces the establishment of seedlings on mudflats covered with macroalgae or in stands with a ground cover of macroalgae was accepted. Under controlled conditions five times as many propagules established on cleared ground compared with ground covered with macroalgae. Predators also reduce seedling establishment, but the model that they preferentially act on propagules stranding on the mudflat was rejected. The low number of seedlings found on mudflats without macroalgae appears to relate to wave and current effects on establishment and the effects of waterlogging or fouling on survival.  相似文献   

16.
Giant cutgrass [Zizaniopsis miliacea], a tall emergent grass native to the southeastern United States, was studied in two Florida lakes. In Lake Seminole (15 176 ha) giant cutgrass forms large expanding stands, but in Lake Alice (9 ha) it is confined to a stable narrow fringe. By monitoring individual plants in Lake Seminole, it was found that an average decumbent flowering stem produced three flowers and ten nodes, 80% of which became rooted in the substrate. Such flowering stem development could potentially result in stand expansion of 2.2–2.7 m/yr, depending upon water levels and rates of node rooting. Once flowering stems became decumbent in Lake Alice, they typically broke, producing no more than two flowers with four nodes in a growing season. While still attached to the parent plant, few of these nodes were able to become rooted in the substrate, limiting the rate of stand expansion in Lake Alice. Sections of flowering stems bearing axillary shoots that were detached from the parent plant and free-floating could become rooted on reaching shallow water and produce robust, new, flowering plants. This interesting mode of population dispersal and spread has important implications for the distribution and management of giant cutgrass.  相似文献   

17.
Flow velocity has an influence on the hydrodynamic and biomechanical properties, as well as on the morphology and the anatomy of the submerged water moss Fontinalis antipyretica Hedw. Cross-sections of the plant stems show two main types of tissues. The strengthening tissue in the outer part is characterized by thick-walled cells with a small lumen, the parenchyma in the centre by thin-walled cells with a large lumen. The specimens from habitats of different flow velocities differ in the proportions of the strengthening tissue and the branching angle of the leaves. A flow tank with a special sensitive two-component balance inserted into the bottom of the flume was used to measure the hydrodynamic drag, which acts on the plant stems at different flow velocities. The drag forces increase with the length of the plant. Mechanical properties such as elasticity and ultimate strength of the plant stems were tested in tension. Relating the data to the relative proportions of the strengthening tissue results in different estimates of Young's moduli for the strengthening tissue of plants from the different sites. The critical strains to which the stems can be extended are remarkably high. Loading and unloading cycles reveal viscoelastic behaviour of the stem tissues. In the first cycle plastic deformation is also observed, but only to a lesser degree in subsequent cycles.  相似文献   

18.
The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.  相似文献   

19.
Invasive species are a problem because of their detrimental ecological and economic effects. Increased disturbance caused by human impacts is hypothesized as a primary factor promoting the spread of invaders. Plants and plant litter can have important effects on plant colonization and community composition by affecting seedling survival and growth. I examined the hypothesis that invasion of non-native Lythrum salicaria in Typha-dominated marshes is disturbance-dependent. If so, the removal of Typha plants or litter would increase the survival and growth of L. salicaria seedlings. Additionally, the removal of both plants and litter could result in an additive or synergistic effect on the establishment of L. salicaria. Alternatively, L. salicaria may be a successful invader because it has a high capacity to establish and grow regardless of neighbours. In this case, L. salicaria would be expected to perform well even in plants and litter. Strategies for managing L. salicaria will depend on which factors promote invasion. I measured the differential effects of plants and litter, alone and in combination, on the survival and growth of L. salicaria seedlings transplanted into marshes. The presence of plants and litter did not affect seedling survival in relatively dry wetland sites, indicating that L. salicaria seedlings have the capacity to persist in the presence of neighbouring Typha spp. competitors. However, removal of both plants and litter allowed increased growth of L. salicaria seedlings in drier wetlands. Therefore, growth was facilitated by disturbance that removed all vegetation. Small disturbances (0.6 m2) decreased competitive suppression by native Typha spp. neighbours and resulted in significant increases in growth. Disturbance of wetlands at risk of invasion by L. salicaria should be avoided.  相似文献   

20.
Efficient vegetative cloning in vitro requires definition of plant growth regulator regimes for each genotype, and therefore formulation of a uniform culture protocol for a genetically heterogeneous wild or uncultivated plant population is often impossible. The likelihood of cloning a wide array of plant genotypes by avoiding the use of plant growth regulator(s) was explored with Moringa oleifera Lamk., Moringa stenopetala (Baker f.) Cufod, and Moringa peregrina Forssk. ex Fiori tree seedlings. Propagation was achieved by multiple shoot regeneration from the cotyledonary node of decapitated seedlings, followed by axillary shoot growth from single node shoot segments and rooting of excised shoots. All steps were accomplished on basal Murashige and Skoog medium without plant growth regulator supplements. The results revealed competence for generation of multiple shoots from cotyledonary node tissue, stimulated by repeated shoot harvest, in seedlings of all three tree species. Tens of plants per seedling were regenerated in about 4 mo from culture initiation. In a given species clone size was seedling-dependent, which presumably stems from genotypic variability among seedlings in regeneration ability in vitro. By this means the laborious search for a plant growth regulator regime suitable for organogenesis induction and adapted per genotype became redundant, and biodiversity of the seed germplasm could be maintained. The approach ideally suits establishment of clones of wild plants of endangered species, like those of the Moringaceae, species with high ability for producing supplementary shoots, and without the need to add plant growth regulators, including the rooting stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号