共查询到20条相似文献,搜索用时 9 毫秒
1.
目的:探讨micro RNA-185(miR-185)对高脂饮食的小鼠模型的HepG2肝细胞脂质代谢和胰岛素信号通路的调节作用。方法:应用定量反转录聚合酶链反应评估过表达或抑制miR-185表达脂质合成相关基因的mRNA水平。此外,应用Western Blot方法测定转染HepG2细胞pre-mir-185后的关键信号通路组分(IRS-1,IRS-2,PI3K、AKT2)和磷酸化PI3K和AKT2的表达情况。结果:诱导的人类HepG2细胞的软脂酸对mir-185水平的下降具有时间和剂量依赖性。经过mir-185转染的HepG2细胞显著降低脂肪酸合成酶,3-hydroxy-3-methylglutaryl-coa还原酶,固醇调节元件结合蛋白和固醇调节元件结合蛋白-1c的mRNA水平,而使用anti-mir-185寡核苷酸抑制mir-185在HepG2细胞中产生相反的作用。在高脂饮食的小鼠模型,与对照组动物相比,mir-185处理后脂质积累明显改善。mir-185诱导后通过上调胰岛素受体底物2增强胰岛素信号通路。结论:miR-185在体内和体外调节肝细胞脂肪酸代谢和胆固醇平衡,以及在改善胰岛素敏感性中起重要作用,miR-185可能成为非酒精性脂肪肝和胰岛素抵抗的新靶点和治疗非酒精性脂肪肝药物作用新靶标。 相似文献
2.
Myrte Merkestein James S. McTaggart Sheena Lee Holger B. Kramer Fiona McMurray Mathilde Lafond Lily Boutens Roger Cox Frances M. Ashcroft 《PloS one》2014,9(5)
Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. 相似文献
3.
Guosheng Li Xuhan Liu Hua Zhu Lan Huang Yali Liu Chunmei Ma Chuan Qin 《Comparative medicine》2009,59(5):449-458
Fat-induced hepatic insulin resistance (FIHIR) in obesity induced by high-fat diet leads to ectopic lipid accumulation and may contribute to the pathogenesis of type 2 diabetes. We examined the alterations in hepatic gene expression involved in FIHIR by using obese insulin-resistant and diabetic hamsters that received high-fat diet with or without low-dose streptozotocin. Microarray analysis and confirmatory real-time RT-PCR indicated that increased mRNA levels of sterol regulatory element-binding proteins (SREBPs) and decreased mRNA levels of liver X receptor (LXRα) and peroxisome-proliferator–activated receptor (PPARα) occurred in FIHIR in insulin-resistant and diabetic hamsters. Expression levels of hepatic LXRα, SREBPs, and PPARα differed significantly between insulin-resistant and diabetic hamsters. Expression of LXRα, SREBPs, and PPARα all change in FIHIR associated with hepatic lipid accumulation in insulin-resistant and diabetic hamsters in which disease is induced by high-fat diet and streptozotocin injection.Abbreviations: Acaa2, acetyl coenzyme A acyltransferase 2; Acadm, medium-chain acyl coenzyme A dehydrogenase; ACC, acetyl coenzyme A carboxylase; Acox, acyl coenzyme A oxidase; Cpt1, carnitine–palmitoyl transferase 1; CYP7A1, cholesterol 7α hydroxylase; FAS, fatty acid synthase; FIHIR, fat-induced hepatic insulin resistance; Gck, glucokinase; G6Pase, glucose-6-phosphatase; HDL, high-density lipoprotein; HMG CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IRS, insulin receptor substrate; LDL, low-density lipoprotein; LDLR, LDL receptor; LXR, liver X receptor; PEPCK, phosphoenolpyruvate carboxykinase; PGC1α ,peroxisome-proliferator–activated receptor γ coactivator 1α; PPAR, peroxisome-proliferator–activated receptor; SCD1, stearoyl coenzyme A desaturase 1; SREBP, sterol regulatory element-binding proteinInsulin resistance plays a critical role in the development of type 2 diabetes.7,9,27 However, the underlying mechanisms remain poorly understood. Obesity induced by a diet high in saturated fat and cholesterol is the most common and important environmental factor for the insulin resistance of type 2 diabetes.2,6 A potential mechanism is ectopic lipid accumulation caused by abnormalities in lipid metabolism in insulin-sensitive tissues (so-called ‘lipotoxicity’), thereby leading to fat-induced insulin resistance.14,24 The liver, an insulin-sensitive tissue, plays a unique role in controlling carbohydrate, lipid, and energy metabolism by maintaining glucose and lipid concentrations within a normal range. Hepatic insulin resistance contributes greatly to the development of the hyperglycemia, dyslipidemia, hepatic steatosis, and systemic insulin resistance in type 2 diabetes mellitus.13,20 Therefore, the mechanisms involved in hepatic insulin resistance, especially FIHIR are a prerequisite to understand pathogenesis of obesity-related type 2 diabetes.The genetic susceptibility for diabetes and many characteristic features of lipid metabolism are similar between hamsters and human.28 We previously developed obese insulin-resistant and type 2 diabetic hamster models1,12,16 to study the pathophysiologic features and natural history of obesity-related insulin resistance and type 2 diabetes. Microarray technology is a powerful tool to decipher the complex gene expression profiles associated with various diseases. In the present study, we used microarray technology to determine identify alterations in hepatic gene expression and to explore molecular mechanisms involved in FIHIR in insulin-resistant and type 2 diabetic hamsters. Understanding the gene expression patterns involved in FIHIR in obese insulin-resistant and type 2 diabetic states may provide new targets for dietary or pharmacologic interventions. 相似文献
4.
Isabel Paiva Rui M. Gil da Costa Joana Ribeiro Hugo Sousa Margarida Bastos Ana Faustino Carlos Rocha Paula A Oliveira Rui Medeiros 《PloS one》2015,10(1)
Human Papillomavirus cause a number of diseases most notably cervical cancer. K14-HPV16 transgenic mice expressing the HPV16 early genes in squamous epithelial cells provide a suitable experimental model for studying these diseases. MicroRNAs are small non-coding RNAs that play an important role in regulating gene expression and have been suggested to play an important role in cancer development. The role of miR-155 in cancer remains controversial and there is limited evidence linking this miRNA to HPV- associated diseases. We hypothesized that miR-155 expression modulates each tissue’s susceptibility to develop HPV-associated carcinogenesis. In this study, we analyzed miR-155 expression in ear and chest skin samples from 22-26 weeks old, female K14-HPV16 transgenic (HPV16+/-) and wild-type (HPV-/-) mice. Among wild-type mice the expression of miR-155 was lower in ear skin compared with chest skin (p = 0.028). In transgenic animals, in situ carcinoma was present in all ear samples whereas chest tissues only showed epidermal hyperplasia. Furthermore, in hyperplastic chest skin samples, miR-155 expression was lower than in normal chest skin (p = 0,026). These results suggest that miR-155 expression may modulate the microenvironmental susceptibility to cancer development and that high miR155 levels may be protective against the carcinogenesis induced by HPV16. 相似文献
5.
6.
7.
8.
Liang Sheng Yan Liu Lin Jiang Zheng Chen Yingjiang Zhou Kae Won Cho Liangyou Rui 《PloS one》2013,8(12)
SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1f/f mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion. 相似文献
9.
10.
应用双向电泳及质谱技术对5周龄三基因(apoE-1- / LDLR-1-/Leprdb/db)联合突变小鼠和野生型小鼠肝组织的差异蛋白质进行比较研究,借此分析脂代谢相关三基因联合突变小鼠肝脏蛋白质表达特点,研究差异表达蛋白与血脂代谢紊乱和动脉粥样硬化的关系.在实验中检测到三基因联合突变小鼠和野生型小鼠肝脏中分别平均有(841±57)个和(1 017±50)个蛋白点(n=3),两者的平均匹配率分别为71.9%,83.2%.三基因联合突变小鼠有140个蛋白点未能与野生型小鼠匹配,其中相差5倍以上的上调点和下调点分别为7个和39个.选取其中的6个点做质谱分析,鉴定为endoplasmin precursor(Grp-94)、酸性富亮氨酸核磷蛋白32家族成员A(acidic leucin-rich nuclear phosphoprotein 32 family member A)、转铁蛋白前体、果糖二磷酸酶1、纤维连接蛋白前体、补体C3前体,纤维蛋白原B β多肽7种蛋白. 该结果提示,差异表达的蛋白对三基因联合突变小鼠的血脂代谢紊乱和动脉粥样硬化发生发展过程起一定作用. 相似文献
11.
Luana Tatiana Albuquerque Guerreiro Anna Beatriz Robottom-Ferreira Marcelo Ribeiro-Alves Thiago Gomes Toledo-Pinto Tiana Rosa Brito Patrícia Sammarco Rosa Felipe Galvan Sandoval Márcia Rodrigues Jardim Sérgio Gomes Antunes Edward J. Shannon Euzenir Nunes Sarno Maria Cristina Vidal Pessolani Diana Lynn Williams Milton Ozório Moraes 《PloS one》2013,8(6)
Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy. 相似文献
12.
Developmental patterning requires the precise interplay of numerous intercellular signaling pathways to ensure that cells are properly specified during tissue formation and organogenesis. The spatiotemporal function of many developmental pathways is strongly influenced by the biosynthesis and intracellular trafficking of signaling components. Receptors and ligands must be trafficked to the cell surface where they interact, and their subsequent endocytic internalization and endosomal trafficking is critical for both signal propagation and its down-modulation. In a forward genetic screen for mutations that alter intracellular Notch receptor trafficking in Drosophila melanogaster, we recovered mutants that disrupt genes encoding serine palmitoyltransferase and acetyl-CoA carboxylase. Both mutants cause Notch, Wingless, the Epidermal Growth Factor Receptor (EFGR), and Patched to accumulate abnormally in endosomal compartments. In mosaic animals, mutant tissues exhibit an unusual non-cell-autonomous effect whereby mutant cells are functionally rescued by secreted activities emanating from adjacent wildtype tissue. Strikingly, both mutants display prominent tissue overgrowth phenotypes that are partially attributable to altered Notch and Wnt signaling. Our analysis of the mutants demonstrates genetic links between abnormal lipid metabolism, perturbations in developmental signaling, and aberrant cell proliferation. 相似文献
13.
日粮中的n-3PUFA具有多种作用,除了调节质膜组成和影响细胞信号之外,同时还涉及多 种与脂代谢有关酶与蛋白的基因表达,如:PPARα、SREBPs、LXR等,通过它们来影响靶基因(如: ACO-A、FAS等)的表达,从而起到调控脂肪沉积的作用。 相似文献
14.
15.
16.
Phloem-Specific Expression of the Tobacco Mosaic Virus Movement Protein Alters Carbon Metabolism and Partitioning in Transgenic Potato Plants 总被引:5,自引:0,他引:5 下载免费PDF全文
The tobacco mosaic virus movement protein (TMV-MP) has pleiotropic effects when expressed in transgenic tobacco (Nicotiana tabacum) plants. In addition to its ability to increase the plasmodesmal size-exclusion limit, the TMV-MP alters carbohydrate metabolism in source leaves and dry matter partitioning between the various plant organs. In the present study the TMV-MP was expressed under the control of a phloem-specific promoter (rolC), and this system was employed to further explore the potential sites at which the TMV-MP exerts its influence over carbon metabolism and transport in transgenic potato (Solanum tuberosum) plants. Immunohistochemical analyses indicated that the TMV-MP was localized mainly to phloem parenchyma and companion cells. Starch and sucrose accumulated in source leaves of these plants to significantly higher levels compared with control potato lines. In addition, the rate of sucrose efflux from excised petioles was lower compared with control plants. Furthermore, under short-day conditions, carbon partitioning was lower to the roots and higher to tubers in rolC plants compared with controls. These results are discussed in terms of the mode(s) by which the TMV-MP exerts its influence over carbon metabolism and photoassimilate translocation. 相似文献
17.
Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD) or a high-fat diet (HFD). In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes. 相似文献
18.
Ryan J. Mailloux Maria Florian Qixuan Chen Jin Yan Ivan Petrov Melanie C. Coughlan Mahemuti Laziyan Don Caldwell Michelle Lalande Dominique Patry Claude Gagnon Kurtis Sarafin Jocelyn Truong Hing Man Chan Nimal Ratnayake Nanqin Li William G. Willmore Xiaolei Jin 《PloS one》2014,9(9)
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol. 相似文献
19.
Besnar N Persuy MA Stinnakre MG Lepourry L Da Silva JC Goubin G Vilotte JL 《Transgenic research》2002,11(5):505-513
The only zinc finger (OZF) gene encodes a protein consisting mainly of 10 zinc finger motifs of the Krüppel type of yet unknown function. To potentially assess its in vivo role, mammary targeted deregulation of the expression of the murine gene was performed in transgenic mice using a goat -casein-based transgene. Mammary expression of the transgene was observed in the 11 lines obtained. In three expressing lines, this expression was tissue-specific and developmentally regulated. Further analysis of mice from two expressing lines revealed that transgene-homozygous females could not sustain full growth of their pups. This phenotype was associated with an impaired mammary gland development noticeable only after mid-gestation. It was characterised by an increase of the adipocyte to acini ratio and low or absence of fat globules within these acini compared to non-transgenic control animals. These transgenic observations strongly suggest that OZF is active in the mammary gland, interfering with the lactation process and thus that the described transgenic mice could be useful models to search for the cellular partner(s) of this protein. 相似文献