首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fc-glycan profile of IgG1 anti-citrullinated peptide antibodies (ACPA) in rheumatoid arthritis (RA) patients has recently been reported to be different from non-ACPA IgG1, a phenomenon which likely plays a role in RA pathogenesis. Herein we investigate the Fc-glycosylation pattern of all ACPA-IgG isotypes and simultaneously investigate in detail the IgG protein-chain sequence repertoire. IgG from serum or plasma (S/P, n = 14) and synovial fluid (SF, n = 4) from 18 ACPA-positive RA-patients was enriched using Protein G columns followed by ACPA-purification on cyclic citrullinated peptide-2 (CCP2)-coupled columns. Paired ACPA (anti-CCP2 eluted IgG) and IgG flow through (FT) fractions were analyzed by LC-MS/MS-proteomics. IgG peptides, isotypes and corresponding Fc-glycopeptides were quantified and interrogated using uni- and multivariate statistics. The Fc-glycans from the IgG4 peptide EEQFNSTYR was validated using protein A column purification. Relative to FT-IgG4, the ACPA-IgG4 Fc-glycan-profile contained lower amounts (p = 0.002) of the agalacto and asialylated core-fucosylated biantennary form (FA2) and higher content (p = 0.001) of sialylated glycans. Novel differences in the Fc-glycan-profile of ACPA-IgG1 compared to FT-IgG1 were observed in the distribution of bisected forms (n = 5, p = 0.0001, decrease) and mono-antennnary forms (n = 3, p = 0.02, increase). Our study also confirmed higher abundance of FA2 (p = 0.002) and lower abundance of afucosylated forms (n = 4, p = 0.001) in ACPA-IgG1 relative to FT-IgG1 as well as lower content of IgG2 (p = 0.0000001) and elevated content of IgG4 (p = 0.004) in ACPA compared to FT. One λ-variable peptide sequence was significantly increased in ACPA (p = 0.0001). In conclusion, the Fc-glycan profile of both ACPA-IgG1 and ACPA-IgG4 are distinct. Given that IgG1 and IgG4 have different Fc-receptor and complement binding affinities, this phenomenon likely affects ACPA effector- and immune-regulatory functions in an IgG isotype-specific manner. These findings further highlight the importance of antibody characterization in relation to functional in vivo and in vitro studies.  相似文献   

2.
Negative ion electrospray (ESI) fragmentation spectra derived from anion-adducted glycans were evaluated for structural determination of N-linked glycans and found to be among the most useful mass spectrometric techniques yet developed for this purpose. In contrast to the more commonly used positive ion spectra that contain isobaric ions formed by losses from different regions of the molecules and often lead to ambiguous deductions, the negative ion spectra contain ions that directly reflect structural features such as the branching pattern, location of fucose, and the presence of bisecting GlcNAc. These structural features are sometimes difficult to determine by traditional methods. Furthermore, the spectra give structural information from mixtures of isomers and from single compounds. The method was evaluated with well-characterized glycans from IgG and used to explore structures of N-linked glycans released from serum glycoproteins with the aim of identifying biomarkers for cancer. Quantities of glycans were measured by ESI and by matrix-assisted laser desorption ionization mass spectrometry; each technique produced virtually identical results for the neutral desialylated glycans.  相似文献   

3.
4.
Mammalian hearts have regenerative potential restricted to early neonatal stage and lost within seven days after birth. Carbohydrates exclusive to cardiac neonatal tissue may be key regulators of regenerative potential. Although cell surface and extracellular matrix glycosylation are known modulators of tissue and cellular function and development, variation in cardiac glycosylation from neonatal tissue to maturation has not been fully examined.In this study, glycosylation of the adult rat cardiac ventricle showed no variability between the two strains analysed, nor were there any differences between the glycosylation of the right or left ventricle using lectin histochemistry and microarray profiling. However, in the Sprague-Dawley strain, neonatal cardiac glycosylation in the left ventricle differed from adult tissues using mass spectrometric analysis, showing a higher expression of high mannose structures and lower expression of complex N-linked glycans in the three-day-old neonatal tissue. Man6GlcNAc2 was identified as the main high mannose N-linked structure that was decreased in adult while higher expression of sialylated N-linked glycans and lower core fucosylation for complex structures were associated with ageing. The occurrence of mucin core type 2 O-linked glycans was reduced in adult and one sulfated core type 2 O-linked structure was identified in neonatal tissue. Interestingly, O-linked glycans from mature tissue contained both N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), while all sialylated N-linked glycans detected contained only Neu5Ac.As glycans are associated with intracellular communication, the specific neonatal structures found may indicate a role for glycosylation in the neonatal associated regenerative capacity of the mammalian heart. New strategies targeting tissue glycosylation could be a key contributor to achieve an effective regeneration of the mammalian heart in pathological scenarios such as myocardial infarction.  相似文献   

5.

Introduction

A major subset of patients with rheumatoid arthritis (RA) is characterized by the presence of circulating autoantibodies directed to citrullinated proteins/peptides (ACPAs). These autoantibodies, which are commonly detected by using an enzyme-linked immunosorbent assay (ELISA) based on synthetic cyclic citrullinated peptides (CCPs), predict clinical onset and a destructive disease course. In the present study, we have used plasma and synovial fluids from patients with RA, for the affinity purification and characterization of anti-CCP2 reactive antibodies, with an aim to generate molecular tools that can be used in vitro and in vivo for future investigations into the pathobiology of the ACPA response. Specifically, this study aims to demonstrate that the surrogate marker CCP2 can capture ACPAs that bind to autoantigens expressed in vivo in the major inflammatory lesions of RA (that is, in the rheumatoid joint).

Methods

Plasma (n = 16) and synovial fluid (n = 26) samples were collected from RA patients with anti-CCP2 IgG levels of above 300 AU/mL. Total IgG was isolated on Protein G columns and subsequently applied to CCP2 affinity columns. Purified anti-CCP2 IgG was analyzed for reactivity and specificity by using the CCPlus® ELISA, in-house peptide ELISAs, Western blot, and immunohisto-/immunocytochemistry.

Results

Approximately 2% of the total IgG pool in both plasma and synovial fluid was CCP2-reactive. Purified anti-CCP2 reactive antibodies from different patients showed differences in binding to CCP2 and differences in binding to citrullinated peptides from α-enolase, vimentin, fibrinogen, and collagen type II, illustrating different ACPA fine-specificity profiles. Furthermore, the purified ACPA bound not only in vitro citrullinated proteins but, more importantly, in vivo-generated epitopes on synovial fluid cells and synovial tissues from patients with RA.

Conclusions

We have isolated ACPAs from plasma and synovial fluid and demonstrated that the CCP2 peptides, frequently used in diagnostic ELISAs, de facto act as surrogate antigens for at least four different, well-characterized, largely non-cross-reactive, ACPA fine specificities. Moreover, we have determined the concentration and proportion of CCP2-reactive IgG molecules in rheumatoid plasma and synovial fluid, and we have shown that the purified ACPAs can be used to detect both in vitro- and in vivo-generated citrullinated epitopes by various techniques. We anticipate that these antibodies will provide us with new opportunities to investigate the potential pathogenic effects of human ACPAs.  相似文献   

6.
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.  相似文献   

7.
Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation, and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of intravenous IgG requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of intravenous IgG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully disialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro-inflammatory to anti-inflammatory activity of the Fc.  相似文献   

8.
Endoglycosidase S (EndoS) is a glycoside-hydrolase secreted by the bacterium Streptococcus pyogenes. EndoS preferentially hydrolyzes the N-linked glycans from the Fc region of IgG during infection. This hydrolysis impedes Fc functionality and contributes to the immune evasion strategy of S. pyogenes. Here, we investigate the mechanism of human serum IgG deactivation by EndoS. We expressed fragments of IgG1 and demonstrated that EndoS was catalytically active against all of them including the isolated CH2 domain of the Fc domain. Similarly, we sought to investigate which domains within EndoS could contribute to activity. Bioinformatics analysis of the domain organization of EndoS confirmed the previous predictions of a chitinase domain and leucine-rich repeat but also revealed a putative carbohydrate binding module (CBM) followed by a C-terminal region. Using expressed fragments of EndoS, circular dichroism of the isolated CBM, and a CBM-C-terminal region fusion revealed folded domains dominated by β sheet and α helical structure, respectively. Nuclear magnetic resonance analysis of the CBM with monosaccharides was suggestive of carbohydrate binding functionality. Functional analysis of truncations of EndoS revealed that, whereas the C-terminal of EndoS is dispensable for activity, its deletion impedes the hydrolysis of IgG glycans.  相似文献   

9.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21.90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N′-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (α2-6) or (α2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (α1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(α2-3)Gal(β1-3)[Neu5Gc(α2-6)]GlcNAc(β1-2)Man(α1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(α1-6). In fraction mTf-V, which was found to be very heterogeneous by 1H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri′-antennary glycans sialylated by Neu5Gc α-2,6- and α-2,3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(α2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (α2-6)GlcNAc sialyltransferase.  相似文献   

10.
The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection and transmission.  相似文献   

11.
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC–MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC–MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC–MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.  相似文献   

12.
Prolactin-inducible protein (PIP) is a glycoprotein found in body secretions from exocrine glands like saliva and seminal plasma. Important biological functions of PIP concentrations have been demonstrated, e.g. in tumor diagnosis and progression. PIP quantity has been also found useful to determine the success of chemotherapy of mammary carcinoma. Here, we present the analysis of the N-glycosylation of PIP isolated from different sources by LC-MS(/MS) and 1H-NMR. We found a very uncommon N-type glycosylation of PIP in healthy individuals from both, seminal fluid and saliva. PIP carries unusual highly fucosylated N-linked glycans with multiple Lewisy (Ley) epitopes on bi-, tri- and tetraantennary structures resulting in up to nine fucosyl residues on a tetraantennary glycan. In most organs, Ley epitopes are not present on N-glycans except in case of a tumor when it is highly up-regulated and important for prognosis. Here, for the first time on a specific glycoprotein Ley antigens are unambiguously characterized on an N-type glycan by NMR spectroscopy. So far, for specific glycoproteins Ley epitopes had only been reported on O-glycans. Furthermore, a correlation between a nonsynonymous single nucleotide polymorphism (SNP) and glycosylation pattern was detected: individuals heterozygous for the SNP causing the amino acid exchange 51Gln to 51His have glycan structures with a higher degree of sialylation compared to individuals lacking the SNP.  相似文献   

13.
Antigenic variation in the globular domain of influenza A virus (IAV) hemagglutinin (HA) precludes effective immunity to this major human pathogen. Although the HA stem is highly conserved between influenza virus strains, HA stem-reactive antibodies (StRAbs) were long considered biologically inert. It is now clear, however, that StRAbs reduce viral replication in animal models and protect against pathogenicity and death, supporting the potential of HA stem-based immunogens as drift-resistant vaccines. Optimally designing StRAb-inducing immunogens and understanding StRAb effector functions require thorough comprehension of HA stem structure and antigenicity. Here, we study the biogenesis of HA stem epitopes recognized in cells infected with various drifted IAV H1N1 strains using mouse and human StRAbs. Using a novel immunofluorescence (IF)-based assay, we find that human StRAbs bind monomeric HA in the endoplasmic reticulum (ER) and trimerized HA in the Golgi complex (GC) with similar high avidity, potentially good news for producing effective monomeric HA stem immunogens. Though HA stem epitopes are nestled among several N-linked oligosaccharides, glycosylation is not required for full antigenicity. Rather, as N-linked glycans increase in size during intracellular transport of HA through the GC, StRAb binding becomes temperature-sensitive, binding poorly to HA at 4°C and well at 37°C. A de novo designed, 65-residue protein binds the mature HA stem independently of temperature, consistent with a lack of N-linked oligosaccharide steric hindrance due to its small size. Likewise, StRAbs bind recombinant HA carrying simple N-linked glycans in a temperature-independent manner. Chemical cross-linking experiments show that N-linked oligosaccharides likely influence StRAb binding by direct local effects rather than by globally modifying the conformational flexibility of HA. Our findings indicate that StRAb binding to HA is precarious, raising the possibility that sufficient immune pressure on the HA stem region could select for viral escape mutants with increased steric hindrance from N-linked glycans.  相似文献   

14.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

15.

Introduction

Neutrophil extracellular traps (NETs) have recently been implicated in a number of autoimmune conditions, including rheumatoid arthritis (RA). We examined the underlying signaling pathways triggering enhanced NETosis in RA and ascertained whether the products of NETosis had diagnostic implications or usefulness.

Methods

Neutrophils were isolated from RA patients with active disease and from controls. Spontaneous NET formation from RA and control neutrophils was assessed in vitro with microscopy and enzyme-linked immunosorbent assay (ELISA) for NETosis-derived products. The analysis of the signal-transduction cascade included reactive oxygen species (ROS) production, myeloperoxidase (MPO), neutrophil elastase (NE), peptidyl arginine deiminase 4 (PAD4), and citrullinated histone 3 (citH3). NET formation was studied in response to serum and synovial fluid and immunoglobulin G (IgG) depleted and reconstituted serum. Serum was analyzed for NETosis-derived products, for which receiver operator characteristic (ROC) curves were calculated.

Results

Neutrophils from RA cases exhibited increased spontaneous NET formation in vitro, associated with elevated ROS production, enhanced NE and MPO expression, nuclear translocation of PAD4, PAD4-mediated citrullination of H3, and altered nuclear morphology. NET formation in both anti-citrullinated peptide antibody (ACPA)-positive and -negative RA was abolished by IgG depletion, but restored only with ACPA-positive IgG. NETosis-derived products in RA serum demonstrated diagnostic potential, the ROC area under the curve for cell-free nucleosomes being >97%, with a sensitivity of 91% and a specificity of 92%. No significant difference was observed between ACPA-positive and -negative cases.

Conclusions

Signaling elements associated with the extrusion of NETs are significantly enhanced to promote NETosis in RA compared with healthy controls. NETosis depended on the presence of ACPA in ACPA-positive RA serum. The quantitation of NETosis-derived products, such as cell-free nucleosomes in serum, may be a useful complementary tool to discriminate between healthy controls and RA cases.  相似文献   

16.
Wang H  Zhang W  Zhao J  Zhang L  Liu M  Yan G  Yao J  Yu H  Yang P 《Journal of Proteomics》2012,75(4):1375-1385
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn157 for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.  相似文献   

17.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   

18.
Identifying biological roles for mammalian glycans and the pathways by which they are synthesized has been greatly facilitated by investigations of glycosylation mutants of cultured cell lines and model organisms. Chinese hamster ovary (CHO) glycosylation mutants isolated on the basis of their lectin resistance have been particularly useful for glycosylation engineering of recombinant glycoproteins. To further enhance the application of these mutants, and to obtain insights into the effects of altering one specific glycosyltransferase or glycosylation activity on the overall expression of cellular glycans, an analysis of the N-glycans and major O-glycans of a panel of CHO mutants was performed using glycomic analyses anchored by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. We report here the complement of the major N-glycans and O-glycans present in nine distinct CHO glycosylation mutants. Parent CHO cells grown in monolayer versus suspension culture had similar profiles of N- and O-GalNAc glycans, although the profiles of glycosylation mutants Lec1, Lec2, Lec3.2.8.1, Lec4, LEC10, LEC11, LEC12, Lec13, and LEC30 were consistent with available genetic and biochemical data. However, the complexity of the range of N-glycans observed was unexpected. Several of the complex N-glycan profiles contained structures of m/z ∼13,000 representing complex N-glycans with a total of 26 N-acetyllactosamine (Galβ1–4GlcNAc)n units. Importantly, the LEC11, LEC12, and LEC30 CHO mutants exhibited unique complements of fucosylated complex N-glycans terminating in Lewisx and sialyl-Lewisx determinants. This analysis reveals the larger-than-expected complexity of N-glycans in CHO cell mutants that may be used in a broad variety of functional glycomics studies and for making recombinant glycoproteins.  相似文献   

19.
The O-glycosidase, endo-α-N-acetylgalactosaminidase from Enterococcus faecalis (endoEF) catalyzes the cleavage of core 1 and core 3 type O-linked disaccharides between GalNAc and serine or threonine residues from glycoproteins. The endoEF has broad substrate specificity and thus is extensively utilized for the structural and functional analysis of the O-linked glycans. In this study, we expressed and purified the recombinant endoEF (rEndoEF) by using the silkworm-baculovirus expression vector system (Silkworm-BEVS) and confirmed the deglycosylation activity of rEndoEF targeting reporter glycoproteins, which was equivalent to the commercial O-glycosidase. Thus, our study provides important clues to produce highly active rEndoEF O-glycosidases employing silkworm-BEVS as an alternative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号