首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

2.
Oxidative stress could trigger lipid accumulation in liver and thus hepatic steatosis. Tea is able to prevent liver disorders, but a direct link between antioxidant capacities and prevention of steatosis has not been reported yet. We aimed to investigate such relationship in a rat model of high fat-high sucrose diet (HFS)-induced obesity and to explore more deeply the mechanisms in isolated hepatocytes. Wistar rats were divided into a control group (standard diet), an HFS group (high fat-sucrose diet) and an HFS + tea group (HFS diet with ad-libitum access to tea drink). Body weight, fat mass, glycemic parameters in blood, lipid and oxidative stress parameters in blood and liver were measured in each group after 14 weeks. Isolated hepatocytes were treated with the reactive oxygen species (ROS) inducer t-BHP in the presence or not of antioxidants (tempol or tea), and superoxide anion production and lipid accumulation were measured using specific fluorescent probes. We reported that the HFS diet highly increased hepatic lipids content, while tea consumption attenuated steatosis and improved the oxidative status (decrease in hepatic oxidative stress, increase in plasma total antioxidant capacity). The role of antioxidant properties of tea in such phenomenon was confirmed in primary cultured rat hepatocytes. Indeed, the increase of mitochondrial ROS production with t-BHP resulted in lipid accumulation in hepatocytes (positive linear regression), and antioxidants (tempol or tea) normalized both. We reported that the antioxidant properties of tea protect rats from an obesogenic HFS diet-induced hepatic steatosis by counteracting the ROS-dependent lipogenesis.  相似文献   

3.
Serine deficiency has been observed in patients with nonalcoholic fatty liver disease (NAFLD). Whether serine supplementation has any beneficial effects on the prevention of NAFLD remains unknown. The present study was conducted to investigate the effects of serine supplementation on hepatic oxidative stress and steatosis and its related mechanisms. Forty male C57BL/6J mice (9 week-old) were randomly assigned into four groups (n = 10) and fed: i) a low-fat diet; ii) a low-fat diet supplemented with 1% (wt:vol) serine; iii) a high-fat (HF) diet; and iv) a HF diet supplemented with 1% serine, respectively. Palmitic acid (PA)-treated primary hepatocytes separated from adult mice were also used to study the effects of serine on oxidative stress. The results showed that serine supplementation increased glucose tolerance and insulin sensitivity, and protected mice from hepatic lipid accumulation, but did not significantly decreased HF diet-induced weight gain. In addition, serine supplementation protected glutathione (GSH) antioxidant system and prevented hypermethylation in the promoters of glutathione synthesis-related genes, while decreasing reactive oxygen species (ROS) in mice fed a HF diet. Moreover, we found that serine supplementation increased phosphorylation and S-glutathionylation of AMP-activated protein kinase α subunit (AMPKα), and decreased ROS, malondialdehyde and triglyceride contents in PA-treated primary hepatocytes. However, while AMPK activity or GSH synthesis was inhibited, the abovementioned effects of serine on PA-treated primary hepatocytes were not observed. Our results suggest that serine supplementation could prevent HF diet-induced oxidative stress and steatosis by epigenetically modulating the expression of glutathione synthesis-related genes and through AMPK activation.  相似文献   

4.
Sirtuin1 (SIRT1) is a crucial regulator of metabolism and it is implicated in the metabolic pathophysiology of several disorders inclusive of Type 2 diabetes and fatty liver disease (NAFLD). The aim of this study was to investigate the role of miR-141 in hepatic steatosis via regulation of SIRT1/AMP-activated protein kinase (AMPK) pathway in hepatocytes. Liver hepatocellular cells (HepG2) were treated with high concentration of glucose to be subsequently used for the assessment of miR-141 and SIRT1 levels in a model of hepatic steatosis. On the other hand, cells were transfected with miR-141 to investigate its effect on hepatocyte steatosis and viability as well as SIRT1 expression and activity along with AMPK phosphorylation. Targeting of SIRT1 by miR-141 was evaluated by bioinformatics tools and confirmed by luciferase reporter assay. Following the intracellular accumulation of lipids in HepG2 cells, the level of miR-141 was increased while SIRT1 mRNA and protein levels, as well as AMPK phosphorylation, was decreased. Transfection with miR-141 mimic significantly downregulated SIRT1 expression and activity while miR-141 inhibitor had the opposite effects. Additionally, modulation of miR-141 levels significantly influenced AMPK phosphorylation status. The results of luciferase reporter assay verified SIRT1 to be directly targeted by miR-141. miR-141 could effectively suppress SIRT1 and lead to decreased AMPK phosphorylation in HepG2 cells. Thus, miR-141/SIRT1/AMPK signaling pathway may be considered a potential target for the therapeutic management of NAFLD.  相似文献   

5.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and is presently the most common chronic liver disease. However, the mechanisms underlying the development of steatosis remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a variety of biological functions. We have investigated the role of miRNA in the development of steatosis. We found that miR-467b expression is significantly downregulated in liver tissues of high-fat diet fed mice and in steatosis-induced hepatocytes. The downregulation of miR-467b resulted in the upregulation of hepatic lipoprotein lipase (LPL), the direct target of miR-467b. Moreover, the interaction between miR-467b and LPL was associated with insulin resistance, a major cause of NAFLD. These results suggest that downregulation of miR-467b is involved in the development of hepatic steatosis by modulating the expression of its target, LPL.  相似文献   

6.
7.
Nonalcoholic fatty liver disease (NAFLD) has been associated with the function and changes in expression levels of microRNAs (miRs). MiR-7 has been proven to play an important role in many cellular processes; however, its functions in the context of liver lipogenesis remain unknown. We applied the microRNA-sponge (miR-SP) technology and generated transgenic miR-7a-SP models (hC7aSP and bC7aSP), which disrupted the activities of hepatic miR-7a and induced the early onset of NAFLD and nonalcoholic steatohepatitis (NASH) in zebrafish. We identified a novel miR-7a target, YY1, and demonstrated novel miR-7a functions to regulate zebrafish hepatic lipid metabolism by controlling YY1 stabilization through the regulation of the expression of lipogenic signaling pathways. Correspondingly, liver specific miR-7a depletion functionally promoted lipid accumulation in hC7ASP livers. NASH hC7aSP increased the expression of inflammatory genes (il-1b, il-6, tnf-α, ifn-γ, nfkb2, and NF-kB) and endoplasmic reticulum stress markers (atf6, ern2, ire1, perk, hspa5 and ddit3). Molecular analysis revealed that miR-7a-SP can stabilize YY1 expression and contribute to the accumulation of hepatic triglycerides by reducing the CHOP-10 expression in the hC7aSP and then inducing the transactivation of C/EBP-α and PPAR-γ expression. PPAR-γ antagonists and miR-7a mimic treatment ameliorate hC7aSP NASH phenotypes. Conclusion: Our results suggest that miR-7a-SP acts as a lipid enhancer by directly increasing YY1 stability to disrupt CHOP-10-dependent suppression of lipogenic pathways, resulting in increased lipid accumulation. MiR-7a expression improves liver steatosis and steatohepatitis in hC7aSPs, which suggests a novel strategy for the prevention and early treatment of NASH in humans.  相似文献   

8.
The proteolytic cleavage of Fibronectin type III domain-containing 5 (FNDC5) generates soluble irisin. Initially described as being mainly produced in muscle during physical exercise, irisin mediates adipose tissue thermogenesis and also regulates carbohydrate and lipid metabolism. The aim of this study was to evaluate the hepatic expression of FNDC5 and its role in hepatocytes in Non-Alcoholic Fatty Liver (NAFL). Here we report that hepatic expression of FNDC5 increased with hepatic steatosis and liver injury without impacting the systemic level of irisin in mouse models of NAFLD (HFD and MCDD) and in obese patients. The increased Fndc5 expression in fatty liver resulted from its upregulation in hepatocytes and non-parenchymal cells in mice. The local production of Fndc5 in hepatocytes was influenced by genotoxic stress and p53-dependent pathways. The down-regulation of FNDC5 in human HepG2 cells and in primary mouse hepatocytes increased the expression of PEPCK, a key enzyme involved in gluconeogenesis associated with a decrease in the expression of master genes involved in the VLDL synthesis (CIDEB and APOB). These alterations in FNDC5-silenced cells resulted to increased steatosis and insulin resistance in response to oleic acid and N-acetyl glucosamine, respectively. The downregulation of Fndc5 also sensitized primary hepatocytes to apoptosis in response to TNFα, which has been associated with decreased hepatoprotective autophagic flux. In conclusion, our human and experimental data strongly suggest that the hepatic expression of FNDC5 increased with hepatic steatosis and its upregulation in hepatocytes could dampen the development of NAFLD by negatively regulating steatogenesis and hepatocyte death.  相似文献   

9.
10.
We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30 mg/kg body weight) or vehicle for 8 weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers.  相似文献   

11.
In obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.Subject terms: Cell signalling, Metabolic disorders  相似文献   

12.
13.
Diets containing excess carbohydrate and fat promote hepatic steatosis and steatohepatitis in mice. Little is known, however, about the impact of specific carbohydrate/fat combinations on liver outcome. This study was designed to determine whether high-energy diets with identical caloric density but different carbohydrate and fat composition have unique effects on the liver. Four experimental diets were formulated with 60% kcal carbohydrate and 20% kcal fat, each in nearly pure form from a single source: starch-oleate, starch-palmitate, sucrose-oleate and sucrose-palmitate. The diets were fed to mice for 3 or 12 weeks for analysis of lipid metabolism and liver injury. All mice developed hepatic steatosis over 12 weeks, but mice fed the sucrose-palmitate diet accumulated more hepatic lipid than those in the other three experimental groups. The exaggerated lipid accumulation in sucrose-palmitate-fed mice was attributable to a disproportionate rise in hepatic de novo lipogenesis. These mice accrued more hepatic palmitate and exhibited more evidence of liver injury than any of the other experimental groups. Interestingly, lipogenic gene expression in mice fed the custom diets did not correlate with actual de novo lipogenesis. In addition, de novo lipogenesis rose in all mice between 3 and 12 weeks, without feedback inhibition from hepatic steatosis. The pairing of simple sugar (sucrose) and saturated fat (palmitate) in a high-carbohydrate/moderate-fat diet induces more de novo lipogenesis and liver injury than other carbohydrate/fat combinations. Diet-induced liver injury correlates positively with hepatic de novo lipogenesis and is not predictable by isolated analysis of lipogenic gene expression.  相似文献   

14.
BackgroundThe transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression.AimTo evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2).MethodsHepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH.ResultsChemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs.ConclusionChemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.  相似文献   

15.
Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.  相似文献   

16.
Background/AimsVitamin A and its metabolites are known to regulate lipid metabolism. However so far, no study has assessed, whether vitamin A deficiency per se aggravates or attenuates the development of non-alcoholic fatty liver disease (NAFLD). Therefore, here, we tested the impact of vitamin A deficiency on the development of NAFLD.MethodsMale weanling Wistar rats were fed one of the following diets; control, vitamin A-deficient (VAD), high fructose (HFr) and VAD with HFr (VADHFr) of AIN93G composition, for 16 weeks, except half of the VAD diet-fed rats were shifted to HFr diet (VAD(s)HFr), at the end of 8th week.ResultsAnimals fed on VAD diet with HFr displayed hypotriglyceridemia (33.5 mg/dL) with attenuated hepatic triglyceride accumulation (8.2 mg/g), compared with HFr diet (89.5 mg/dL and 20.6 mg/g respectively). These changes could be partly explained by the decreased activity of glycerol 3-phosphate dehydrogenase (GPDH) and the down-regulation of stearoyl CoA desaturase 1 (SCD1), both at gene and protein levels, the key determinants of triglyceride biosynthesis. On the other hand, n-3 long chain polyunsaturated fatty acid, docosahexaenoic acid and its active metabolite; resolvin D1 (RvD1) levels were elevated in the liver and plasma of VAD diet-fed groups, which was negatively associated with triglyceride levels. All these factors confer vitamin A deficiency-mediated protection against the development of hepatic steatosis, which was also evident from the group shifted from VAD to HFr diet.ConclusionsVitamin A deficiency attenuates high fructose-induced hepatic steatosis, by regulating triglyceride synthesis, possibly through GPDH, SCD1 and RvD1.  相似文献   

17.
The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.  相似文献   

18.
It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase.In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist.Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5 ± 7.3 mg/g liver and 47.9 ± 4.6 mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3 weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent.In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion.  相似文献   

19.
Background: Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver diseases worldwide. At present, there are no effective pharmacological therapies for NAFLD except lifestyle intervention-mediated weight loss. Atractylenolide III (ATL III), the major bioactive component found in Atractylode smacrocephala Koidz, has been shown to exert anti-oxidant, anti-tumor, anti-allergic response, anti-bacterial effects and cognitive protection. Here we investigate the therapeutic potential and underlying mechanisms of ATL III for the treatment of NAFLD.Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated with ATL III. Lipid accumulation was analyzed by Oil Red O staining in liver tissues and free fatty acids (FFAs)-treated hepatocytes. AMP-activated protein (AMPK) and sirtuin 1(SIRT1) signaling pathways were inhibited by Compound C and EX527 in vitro, respectively. Small-interfering RNA (siRNA) was used to knockdown adiponectin receptor 1 (AdipoR1) expression in HepG2 cells.Results: ATL III treatment ameliorated liver injury and hepatic lipid accumulation in the HFD-induced NAFLD mouse model as demonstrated by that ATL III administration significantly reduced serum levels of alanine aminotransferase, glutamic oxaloacetic transaminase, triglycerides, total cholesterol and low-density lipoprotein. Furthermore, treatment with ATL III alleviated hepatic oxidative stress, inflammation and fibrosis in the HFD feeding model. To study the underlying mechanisms, we performed Computer Aided Design assay and found that open-formed AdipoR1 and adiponectin receptor 2 were the potential receptors targeted by ATL III. Interestingly, HFD feeding or FFAs treatment only reduced hepatic AdipoR1 expression, while such reduction was abolished by ATL III administration. In addition, in vitro treatment with ATL III activated the AdipoR1 downstream AMPK /SIRT1 signaling pathway and reduced lipid deposition in HepG2 cells, which was diminished by silencing AdipoR1. Finally, inhibition of AMPK or SIRT1, the AdipoR1 downstream signaling, abolished the protective effects of ATL III on lipid deposition and oxidative stress in FFAs-treated HepG2 cells.Conclusion: Our findings suggest that ATL III is a therapeutic drug for the treatment of NAFLD and such protective effect is mediated by activating hepatic AdipoR1-mediated AMPK/SIRT1 signaling pathway.  相似文献   

20.
Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号