首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the last few decades, molecular typing has become an important tool in taxonomic, phylogenetic and identification studies of numerous groups of bacteria, including the yersiniae. In this study, Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR), Pulsed-Field Gel Electrophoresis (PFGE), 16S rRNA gene sequencing and Multilocus Sequence Analysis (MLSA) were performed to determine the ability of these techniques to be used in taxonomy and identification of Yersinia strains. A total of 60 Yersinia strains were genotyped by ERIC-PCR and PFGE. Moreover, an in silico analysis was carried out for 16S rRNA gene sequencing and MLSA, using 68 and 49 Yersinia strains, respectively. A phylogenetic tree constructed from the ERIC-PCR, 16S rRNA gene sequencing and MLSA data grouped most of the Yersinia species into distinct species-specific clusters. In the PFGE assay these clusters were not observed. On this basis, ERIC-PCR, 16S rRNA gene sequencing and MLSA seem to be valuable techniques for use in taxonomic and identification studies of the genus Yersinia, whereas PFGE does not. Furthermore, ERIC-PCR has the advantage of being a cheaper, easier and faster assay than 16S rRNA gene sequencing or MLSA, and for these reasons can be considerate an alternative tool in taxonomic studies of yersiniae.  相似文献   

2.
Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species.  相似文献   

3.
Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5’-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5’-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small “in-house” spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the “in-house” database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and < 2.00). In summary, MLSA showed superior discriminatory power compared with the 5’-end 606 bp partial 16S rRNA gene sequencing for species identification of Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database.  相似文献   

4.
Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.  相似文献   

5.
We analyzed the usefulness of rpoA, recA, and pyrH gene sequences for the identification of vibrios. We sequenced fragments of these loci from a collection of 208 representative strains, including 192 well-documented Vibrionaceae strains and 16 presumptive Vibrio isolates associated with coral bleaching. In order to determine the intraspecies variation among the three loci, we included several representative strains per species. The phylogenetic trees constructed with the different genetic loci were roughly in agreement with former polyphasic taxonomic studies, including the 16S rRNA-based phylogeny of vibrios. The families Vibrionaceae, Photobacteriaceae, Enterovibrionaceae, and Salinivibrionaceae were all differentiated on the basis of each genetic locus. Each species clearly formed separated clusters with at least 98, 94, and 94% rpoA, recA, and pyrH gene sequence similarity, respectively. The genus Vibrio was heterogeneous and polyphyletic, with Vibrio fischeri, V. logei, and V. wodanis grouping closer to the Photobacterium genus. V. halioticoli-, V. harveyi-, V. splendidus-, and V. tubiashii-related species formed groups within the genus Vibrio. Overall, the three genetic loci were more discriminatory among species than were 16S rRNA sequences. In some cases, e.g., within the V. splendidus and V. tubiashii group, rpoA gene sequences were slightly less discriminatory than recA and pyrH sequences. In these cases, the combination of several loci will yield the most robust identification. We can conclude that strains of the same species will have at least 98, 94, and 94% rpoA, recA, and pyrH gene sequence similarity, respectively.  相似文献   

6.
Hyphomonas, a genus of budding, prosthecate bacteria, are primarily found in the marine environment. Seven type strains, and 35 strains from our collections of Hyphomonas, isolated from the Pacific Ocean, Atlantic Ocean, Arctic Ocean, South China Sea and the Baltic Sea, were investigated in this study using multilocus sequence analysis (MLSA). The phylogenetic structure of these bacteria was evaluated using the 16S rRNA gene, and five housekeeping genes (leuA, clpA, pyrH, gatA and rpoD) as well as their concatenated sequences. Our results showed that each housekeeping gene and the concatenated gene sequence all yield a higher taxonomic resolution than the 16S rRNA gene. The 42 strains assorted into 12 groups. Each group represents an independent species, which was confirmed by virtual DNA-DNA hybridization (DDH) estimated from draft genome sequences. Hyphomonas MLSA interspecies and intraspecies boundaries ranged from 93.3% to 96.3%, similarity calculated using a combined DDH and MLSA approach. Furthermore, six novel species (groups I, II, III, IV, V and XII) of the genus Hyphomonas exist, based on sequence similarities of the MLSA and DDH values. Additionally, we propose that the leuA gene (93.0% sequence similarity across our dataset) alone could be used as a fast and practical means for identifying species within Hyphomonas. Finally, Hyphomonas'' geographic distribution shows that strains from the same area tend to cluster together as discrete species. This study provides a framework for the discrimination and phylogenetic analysis of the genus Hyphomonas for the first time, and will contribute to a more thorough understanding of the biological and ecological roles of this genus.  相似文献   

7.
Multilocus sequence analysis (MLSA) was used to refine the phylogenetic analysis of the genus Kribbella, which currently contains 17 species with validly-published names. Sequences were obtained for the 16S rRNA, gyrB, rpoB, recA, relA and atpD genes for 16 of the 17 type strains of the genus plus seven non-type strains. A five-gene concatenated sequence of 4099 nt was used to examine the phylogenetic relationships between the species of the genus Kribbella. Using the concatenated sequence of the gyrB-rpoB-recA-relA and atpD genes, most Kribbella type strains can be distinguished by a genetic distance of >0.04. Each single-gene tree had an overall topology similar to that of the concatenated sequence tree. The single-gene relA tree, used here for the first time in MLSA of actinobacteria, had good bootstrap support, comparable to the rpoB and atpD gene trees, which had topologies closest to that of the concatenated sequence tree. This illustrates that relA is a useful addition in MLSA studies of the genus Kribbella. We propose that concatenated gyrB-rpoB-recA-relA-atpD gene sequences be used for examining the phylogenetic relationships within the genus Kribbella and for determining the closest phylogenetic relatives to be used for taxonomic comparisons.  相似文献   

8.
Several characteristics of the 16S rRNA gene, such as its essential function, ubiquity, and evolutionary properties, have allowed it to become the most commonly used molecular marker in microbial ecology. However, one fact that has been overlooked is that multiple copies of this gene are often present in a given bacterium. These intragenomic copies can differ in sequence, leading to identification of multiple ribotypes for a single organism. To evaluate the impact of such intragenomic heterogeneity on the performance of the 16S rRNA gene as a molecular marker, we compared its phylogenetic and evolutionary characteristics to those of the single-copy gene rpoB. Full-length gene sequences and gene fragments commonly used for denaturing gradient gel electrophoresis were compared at various taxonomic levels. Heterogeneity found between intragenomic 16S rRNA gene copies was concentrated in specific regions of rRNA secondary structure. Such “heterogeneity hot spots” occurred within all gene fragments commonly used in molecular microbial ecology. This intragenomic heterogeneity influenced 16S rRNA gene tree topology, phylogenetic resolution, and operational taxonomic unit estimates at the species level or below. rpoB provided comparable phylogenetic resolution to that of the 16S rRNA gene at all taxonomic levels, except between closely related organisms (species and subspecies levels), for which it provided better resolution. This is particularly relevant in the context of a growing number of studies focusing on subspecies diversity, in which single-copy protein-encoding genes such as rpoB could complement the information provided by the 16S rRNA gene.  相似文献   

9.
Four species of marine purple sulfur bacteria of the genus Marichromatium have been validly described. A recent re-analysis of the 16S rRNA-based similarity and genomic DNA–DNA hybridizations (DDH) of the type strains [33] suggested that some of them are so closely related that they can be considered heterotypic synonyms. Here, we report on the evaluation of the multilocus sequence analysis approach (MLSA) for nine Marichromatium strains in order to resolve their intrageneric genealogical relationships. MLSA was based on six protein-coding genes (gyrB, recA, fusA, dnaK, pufM, and soxB), and the results were comparable to DDH. The phylogenetic tree constructed with the concatenated sequences, which also included the 16S rRNA gene and the internal transcriber spacer ITS region (4331 bp), separated the nine strains in four lineages that reflected the four Marichromatium species. The reconstructed phylogenetic tree based on concatenation of six protein-coding genes was also highly congruent with the tree topology based on the 16S rRNA gene.  相似文献   

10.
The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T = LMG 31434T = CIP 111709T) as type strain, is proposed as novel species.  相似文献   

11.
Two phylogenetically distinct Vibrionaceae strains C4II189T and C4V358T isolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T (=DSM 101554T = JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T (=DSM 101555T = JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.  相似文献   

12.
Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described.  相似文献   

13.
《Gene》1997,185(2):201-207
The Fur (ferric uptake regulator) protein controls the expression of a number of bacterial virulence determinants including those involved in iron uptake. The fur gene was cloned and characterized from Klebsiella pneumoniae. The gene is preceded by a single autoregulated promoter whose −10 region overlaps the putative Fur binding site. The autoregulated nature of the K. pneumoniae fur gene and functionality of the encoded Fur repressor were tested in Fur titration and complementation assays. A partial open reading frame upstream from the fur gene was identified as a flavodoxin (fldA) gene. An open reading frame located 50 bases downstream from the fur stop codon appears to be a truncated citA gene that, if functional, would encode only the carboxy terminus of a citrate utilization protein. The fldA-fur arrangement is also present in Escherichia coli. However, the fur-citA arrangement found in K. pneumoniae is novel. It appears that the chromosomal region downstream from the fur gene is unstable and, thus, variable even in closely related bacterial lineages. To assess the ability of the Fur protein sequence to reflect organismal phylogeny, the Fur protein tree was compared to the tree of 16S rRNA (ribosomal RNA). The Fur dataset comprises almost an order of magnitude fewer characters than the 16S rRNA but is nonetheless able to track the phylogenetic signal reasonably well, suggesting that the fur gene, like the 16S rDNA, may not be subject to horizontal gene transfer in these bacteria.  相似文献   

14.
The Streptomyces albidoflavus 16S rRNA gene clade contains 10 species and subspecies with identical 16S rRNA gene sequences and very similar numerical taxonomic data, including Streptomyces griseus subsp. solvifaciens. Type strains of this clade, as well as three CGMCC strains which were received as Streptomyces galilaeus, Streptomyces sioyaensis and Streptomyces vinaceus, respectively, that shared the same 16S rRNA gene sequences with the clade, were subjected to multilocus sequence analysis (MLSA), DNA–DNA hybridization (DDH) and phenotypic characterization for a comprehensive reevaluation. The 13 strains still formed a distinct, albeit loosely related, clade in the phylogenetic tree based on concatenated sequences of aptD, gyrB, recA, rpoB and trpB genes, supported by a high bootstrap value and different tree-making algorithms, with MLSA evolutionary distances ranging from 0 to 0.003. DDH values among these strains were well above the 70% cut-off point for species delineation. Based on the genotypic data of MLSA and DDH, combined with key phenotypic properties in common, it is proposed that the 10 species and subspecies of the S. albidoflavus clade, namely S. albidoflavus, S. canescens, S. champavatii, S. coelicolor, S. felleus, S. globisporus subsp. caucasicus, S. griseus subsp. solvifaciens, S. limosus, S. odorifer and S. sampsonii, should be merged into a single genomic species, for which the name S. albidoflavus is retained, and that the three strains S. galilaeus CGMCC 4.1320, S. sioyaensis CGMCC 4.1306 and S. vinaceus CGMCC 4.1305 should be assigned to S. albidoflavus as well. The results also indicated that MLSA could be the procedure of choice for distinguishing between species within Streptomyces 16S rRNA gene clades.  相似文献   

15.
In the present scenario, it is now well documented that probiotics confer health benefits to the host and the purported probiotic effects are highly strain specific. Hence, accurate genotypic identification is extremely important to link the strain to the specific health effect. With this aim, specific primed-PCR assays were developed and explored for the molecular identification and typing of a putative indigenous probiotic isolate Lp91 of human faecal origin. PCR with specific primers targeting 23S rRNA gene of genus Lactobacillus and 16S rRNA gene of species L. plantarum resulted positive for Lp91. In addition, BLAST analysis of 16S rRNA gene sequence of Lp91 and multiple sequence alignment of 16S rRNA gene variable (V2-V3) regions along with the reference sequences revealed it as L. plantarum with a sequence identity of more than 99%. Furthermore, resolution of 16S rRNA gene sequences was sufficient to infer a phylogenetic relationship amongst Lactobacillus species. In order to determine strain-level variations, randomly amplified polymorphic DNA (RAPD) banding profiles of Lp91 obtained with OPAA-01, OPAP-01 and OPBB-01 primers were compared with those of reference strains of Lactobacillus spp., and Lp91 could be delineated as a distinct strain. Apart from this, presence of probiotic markers viz. bile salt hydrolase (bsh) and collagen-binding protein (cbp) encoding genes in Lp91 genome could be attributed to its exploitation as a potential probiotic adjunct in the development of indigenous functional foods. Lactobacillus isolates/or strains from the gastrointestinal system, fermented products and other environmental niches could be identified and characterized by employing the PCR methods developed in this study; they are rapid, reproducible and more accurate than the conventional methods based on the fermentation profiles.  相似文献   

16.
Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.  相似文献   

17.
In the present study, we sequenced the RNA polymerase beta subunit (rpoB) gene of marine Vibrio species and assessed its discriminative power in identifying vibrios. Both the rpoB and 16S rRNA sequences of 29 phenotypically different Vibrio strains isolated from coastal waters were determined. Molecular and phylogenetic comparisons of the sequences of these two genes classified the 29 strains into 11 different species. The resolution of the Vibrio spp. on the rpoB phylogenetic tree was approximately three times greater than that on the 16S rRNA phylogenetic tree. Moreover, by comparing the rpoB sequences of 98 marine γ-Proteobacteria, including 38 marine Vibrio species, Vibrio-specific primers were developed to amplify a 730-bp fragment of the rpoB gene. Using these primers, we successfully detected Vibrio signals in environmental samples and determined their relative abundances via comparisons with known standards. This rpoB-targeting polymerase chain reaction assay can be used efficiently to monitor relative Vibrio abundance in marine waters.  相似文献   

18.
The Lactobacillus plantarum group comprises five very closely related species. Some species of this group are considered to be probiotic and widely applied in the food industry. In this study, we compared the use of two different molecular markers, the 16S rRNA and dnaK gene, for discriminating phylogenetic relationships amongst L. plantarum strains using sequencing and DNA fingerprinting. The average sequence similarity for the dnaK gene (89.2%) among five type strains was significantly less than that for the 16S rRNA (99.4%). This result demonstrates that the dnaK gene sequence provided higher resolution than the 16S rRNA and suggests that the dnaK could be used as an additional phylogenetic marker for L. plantarum. Species-specific profiles of the Lactobacillus strains were obtained with RAPD and RFLP methods. Our data indicate that phylogenetic relationships between these strains are easily resolved using sequencing of the dnaK gene or DNA fingerprinting assays.  相似文献   

19.
API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.  相似文献   

20.
【目的】采用多位点序列分析方法,研究印度洋3 000 m以下深海沉积物中分离得到的16S rRNA基因比对高度相似的链霉菌菌株的种间系统发育关系,同时探讨各管家基因及多基因聚类分析后的种间区分能力。【方法】以分离自印度洋深海沉积物的7株Streptomyces albidoflavus,11株Streptomyces cavourensis,16株Streptomyces pratensis为研究对象,以16S rRNA、atpD、recA和rpoB基因片段为标记,通过PCR扩增、测序,获得序列。同时从NCBI上下载5株S.pratensis上述4个基因的序列,将所有序列在MLST网站进行比对,并构建系统进化树进行比较。【结果】S.pratensis各菌株种内比较发现,16S rRNA基因构建的系统进化树中相同基因型的菌株没有聚在一起,系统进化树不稳定,区分度不高。其余3个构建的系统进化树稳定,菌株的聚类关系与MLST数据库得到的基因型一致。同时,多基因聚类分析后将菌株分为6个类群。在3个种的种间多位点序列比较中,除区分度明显增加、进化树更加稳定以外,还发现rec A基因进化上比较特殊的菌株。【结论】多位点序列分析将实验菌株分为很多不同的类型,成功地将所分离的链霉菌进行了更细的分类,同时也找到部分菌株在个别基因上差异较大。此方法可以用于相近种的快速鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号