首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

3.
4.
The CCR4-CAF1-NOT complex is a major cytoplasmic deadenylation complex in yeast and mammals. This complex associates with RNA-binding proteins and microRNAs to repress translation of target mRNAs. We sought to determine how CCR4 and CAF1 participate in repression and control of maternal mRNAs using Xenopus laevis oocytes. We show that Xenopus CCR4 and CAF1 enzymes are active deadenylases and repress translation of an adenylated mRNA. CAF1 also represses translation independent of deadenylation. The deadenylation-independent repression requires a 5′ cap structure on the mRNA; however, deadenylation does not. We suggest that mere recruitment of CAF1 is sufficient for repression, independent of deadenylation.  相似文献   

5.
The human CCR4-NOT deadenylase complex consists of at least nine enzymatic and non-enzymatic subunits. Accumulating evidence suggests that the non-enzymatic subunits are involved in the regulation of mRNA deadenylation, although their precise roles remain to be established. In this study, we addressed the function of the CNOT1 subunit by depleting its expression in HeLa cells. Flow cytometric analysis revealed that the sub G1 fraction was increased in CNOT1-depleted cells. Virtually, the same level of the sub G1 fraction was seen when cells were treated with a mixture of siRNAs targeted against all enzymatic subunits, suggesting that CNOT1 depletion induces apoptosis by destroying the CCR4-NOT-associated deadenylase activity. Further analysis revealed that CNOT1 depletion leads to a reduction in the amount of other CCR4-NOT subunits. Importantly, the specific activity of the CNOT6L immunoprecipitates-associated deadenylase from CNOT1-depleted cells was less than that from control cells. The formation of P-bodies, where mRNA decay is reported to take place, was largely suppressed in CNOT1-depleted cells. Therefore, CNOT1 has an important role in exhibiting enzymatic activity of the CCR4-NOT complex, and thus is critical in control of mRNA deadenylation and mRNA decay. We further showed that CNOT1 depletion enhanced CHOP mRNA levels and activated caspase-4, which is associated with endoplasmic reticulum ER stress-induced apoptosis. Taken together, CNOT1 depletion structurally and functionally deteriorates the CCR4-NOT complex and induces stabilization of mRNAs, which results in the increment of translation causing ER stress-mediated apoptosis. We conclude that CNOT1 contributes to cell viability by securing the activity of the CCR4-NOT deadenylase.  相似文献   

6.
The CCR4-NOT complex is the major enzyme catalyzing mRNA deadenylation in Saccharomyces cerevisiae. We have identified homologs for almost all subunits of this complex in the Drosophila genome. Biochemical fractionation showed that the two likely catalytic subunits, CCR4 and CAF1, were associated with each other and with a poly(A)-specific 3' exonuclease activity. In Drosophila, the CCR4 and CAF1 proteins were ubiquitously expressed and present in cytoplasmic foci. Individual knock-down of several potential subunits of the Drosophila CCR4-NOT complex by RNAi in tissue culture cells led to a lengthening of bulk mRNA poly(A) tails. Knock-down of two individual subunits also interfered with the rapid deadenylation of Hsp70 mRNA during recovery from heat shock. Similarly, ccr4 mutant flies had elongated bulk poly(A) and a defect in Hsp70 mRNA deadenylation. A minor increase in bulk poly(A) tail length was also observed in Rga mutant flies, which are affected in the NOT2 subunit. The data show that the CCR4-NOT complex is conserved in Drosophila melanogaster and plays a role in general and regulated mRNA deadenylation.  相似文献   

7.
8.
9.
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4–NOT deadenylase complex followed by the removal of the 5′ cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4–NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6–CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.  相似文献   

10.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

11.
Deadenylation is a widespread effect of miRNA regulation   总被引:2,自引:1,他引:1       下载免费PDF全文
miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that ~60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3′ ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.  相似文献   

12.
Animal miRNAs commonly mediate mRNA degradation and/or translational repression by binding to their target mRNAs. Key factors for miRNA-mediated mRNA degradation are the components of the miRNA effector complex (AGO1 and GW182) and the general mRNA degradation machinery (deadenylation and decapping enzymes). The CCR4-NOT1 complex required for the deadenylation of target mRNAs is directly recruited to the miRNA effector complex. However, it is unclear whether the following decapping step is only a consequence of deadenylation occurring independent of the miRNA effector complex or e.g. decapping activators can get recruited to the miRNA effector complex. In this study we performed split-affinity purifications in Drosophila cells and provide evidence for the interaction of the decapping activator HPat with the miRNA effector complex. Furthermore, in knockdown analysis of various mRNA degradation factors we demonstrate the importance of NOT1 for this interaction. This suggests that deadenylation and/or the recruitment of NOT1 protein precedes the association of HPat with the miRNA effector complex. Since HPat couples deadenylation and decapping, the recruitment of HPat to the miRNA effector complex provides a mechanism to commit the mRNA target for degradation.  相似文献   

13.
《Cellular signalling》2014,26(11):2390-2396
Tristetraprolin (TTP) is an RNA-binding protein which can bind to the AU-rich elements (AREs) at the 3′-untranslated region (3′-UTR) of target mRNA and promote mRNA deadenylation and degradation. We have shown in a previous study that TTP regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8), both of whose mRNAs have AREs in the 3′-UTR, in human pulmonary microvascular endothelial cells (HPMEC) through destabilizing target mRNAs, nevertheless, the mechanism by which TTP promotes mRNA decay remains unclear. Observations have indicated that TTP can interact with CAF1 (CNOT7/hCAF1 in human), a subunit of the CCR4-NOT complex with deadenylase activity. Another study illustrated that TTP can directly bind to CNOT1, the scaffold subunit of the CCR4-NOT complex. The present study showed that TTP bound to the AREs of ICAM-1 and IL-8 mRNAs and was coimmunoprecipitated with intracellular ICAM-1 and IL-8 mRNAs. TTP, CNOT7 and CNOT1 were coimmunoprecipitated in HPMEC. CNOT7 silencing stabilized ICAM-1 and IL-8 mRNAs and increased ICAM-1 and IL-8 production following TNF-α stimulation. These results, together with our previous study, suggest that CNOT7/hCAF1 is involved in ICAM-1 and IL-8 regulation by TTP in HPMEC.  相似文献   

14.
miRNAs associate with Argonaute (AGO) proteins to silence the expression of mRNA targets by inhibiting translation and promoting deadenylation, decapping, and mRNA degradation. A current model for silencing suggests that AGOs mediate these effects through the sequential recruitment of GW182 proteins, the CCR4–NOT deadenylase complex and the translational repressor and decapping activator DDX6. An alternative model posits that AGOs repress translation by interfering with eIF4A function during 43S ribosomal scanning and that this mechanism is independent of GW182 and the CCR4–NOT complex in Drosophila melanogaster. Here, we show that miRNAs, AGOs, GW182, the CCR4–NOT complex, and DDX6/Me31B repress and degrade polyadenylated mRNA targets that are translated via scanning‐independent mechanisms in both human and Dm cells. This and additional observations indicate a common mechanism used by these proteins and miRNAs to mediate silencing. This mechanism does not require eIF4A function during ribosomal scanning.  相似文献   

15.
16.
Suzuki A  Saba R  Miyoshi K  Morita Y  Saga Y 《PloS one》2012,7(3):e33558
Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the first 10 amino acids (AAs) of NANOS2 are required for this binding. We further observe that a NANOS2 mutant lacking these first 10 AAs (NANOS2-ΔN10) fails to rescue defects in the Nanos2-null mouse. Our current data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In addition, we further demonstrate that NANOS2-ΔN10 can associate with specific mRNAs as well as wild-type NANOS2, suggesting the existence of other NANOS2-associated factor(s) that determine the specificity of RNA-binding independently of the CCR4-NOT deadenylation complex.  相似文献   

17.
18.
19.
Anteroposterior patterning of the Drosophila embryo depends on a gradient of Nanos protein arising from the posterior pole. This gradient results from both nanos mRNA translational repression in the bulk of the embryo and translational activation of nanos mRNA localized at the posterior pole. Two mechanisms of nanos translational repression have been described, at the initiation step and after this step. Here we identify a novel level of nanos translational control. We show that the Smaug protein bound to the nanos 3' UTR recruits the deadenylation complex CCR4-NOT, leading to rapid deadenylation and subsequent decay of nanos mRNA. Inhibition of deadenylation causes stabilization of nanos mRNA, ectopic synthesis of Nanos protein and head defects. Therefore, deadenylation is essential for both translational repression and decay of nanos mRNA. We further propose a mechanism for translational activation at the posterior pole. Translation of nanos mRNA at the posterior pole depends on oskar function. We show that Oskar prevents the rapid deadenylation of nanos mRNA by precluding its binding to Smaug, thus leading to its stabilization and translation. This study provides insights into molecular mechanisms of regulated deadenylation by specific proteins and demonstrates its importance in development.  相似文献   

20.
The CCR4-NOT complex is a deadenylation complex, which plays a major role for mRNA stability. The complex is conserved from yeast to human and consists of nine proteins NOT1-NOT5, CCR4, CAF1, CAF40 and CAF130. We have successfully isolated the complex using a Protein A tag on NOT1, followed by cross-linking on a glycerol gradient. All components of the complex were identified by mass spectrometry. Electron microscopy of negatively stained particles followed by image reconstruction revealed an L-shaped complex with two arms of similar length. The arms form an accessible cavity, which we think could provide an extensive interface for RNA-deadenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号