首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The purpose of this research was to evaluate in vitro transnasal sustained-release ability of sorbitan monostearate (SMS) organogels in isopropyl myristate (IM). Organogels were prepared containing SMS (2.5%–20%) and water (5%–25%) in IM and analyzed microscopically for phase behavior. The effect of Tween surfactants on gel strength and in vitro nasal diffusion of propranolol is reported. The in vitro nasal release retardant effect of SMS and Tween 20 was investigated using factorial design. The microscopic changes in structure of organogel during in vitro nasal diffusion were studied. The water-holding capacity of SMS organogels in IM increased with SMS concentration. The release retardant effect with incorportation of cosurfactant was of the order of Tween 80> Tween 60> Tween 20. Gel strengthening and increased viscosity were evident with increased concentration of SMS and Tween 20. The 3-dimensional network of SMS molecules controls the diffusional drug release. The organogel system on nasal mucosa during diffusion is dynamic in nature and changes continuously with the time of diffusion. The water penetration in the organogel network results in percolation and emulsification of organogel, thus affecting the release. Organogels provided an effective barrier for diffusion of propranolol. The surface epithelium lining and the granular cellular structure of treated nasal mucosa were intact.  相似文献   

2.
Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0147-2) contains supplementary material, which is available to authorized users.KEY WORDS: alginate, drug delivery, leaching, microparticles, organogels  相似文献   

3.
Cinnamic acid (CA) was added to rice bran oil (RBO) at concentrations range from 2 to 12% (w/w) to prepare functional fat-like organogel. The oil binding capacity and gel formation time of the obtained organogels were determined. The results showed that the oil binding capacity was increased and the gel formation time was significantly (p < 0.05) decreased with the increase in concentration of CA up to 10% (w/w). Based on these results, organogels prepared from RBO with 6, 8, and 10% CA (w/w) were chosen and subjected to further characterization analyses. The microscopy analysis showed different gel network structures and crystalline behavior for the organogels prepared with varying concentrations of CA. The rheological and thermal properties of the organogel were improved with the increase in CA concentration up to 10% (w/w). The X-ray diffractometer and Fourier Transform Infrared spectroscopy analyses indicated that the gel network formed based on crystalline of CA and physical entanglements among the organogel components. In addition, the organogel of RBO with 10% CA (w/w) showed a uniform and homogenized structure during storage at 5 °C for 28 days compared to the organogels prepared with 6 and 8%. Therefore, it can be suggested that cinnamic acid is a good organogelator for preparing functional fat-like organogel from rice bran oil.  相似文献   

4.
The aim of the present research was to study the effect of shear on the crystallization behavior of monoglyceride organogels. To this end, organogels were prepared by mixing cod liver oil and saturated monoglycerides at 80°C and then crystallizing them at 20°C under shear rates ranging from 0 to 2,000 s−1. The organogels were characterized using polarized light microscopy, Cryo-SEM, and X-ray diffraction. The rheological properties and the oil binding capacity of the different systems were also evaluated. Results obtained in this study showed that the introduction of shear during organogel formation greatly affects structure at the nano, micro, and macro levels. Solidification of the organogel under static conditions led to the formation of a strong gel network, with a high oil binding capacity. On the contrary, shear processing during crystallization led to the formation of a weak gel network with a low oil binding capacity.  相似文献   

5.
The present work focuses on the preparation and evaluation of lecithin organogel system of thermoreversible polymer pluronic F127, which would enhance the stability and absorption of sumatriptan succinate across the skin. Formulations were developed with and without co-surfactant (pluronic F127). The prepared organogels were evaluated for its appearance, organoleptic characteristics, and feel upon application, homogeneity, occlusivenes, washability, pH, viscosity, spreadability, gel transition temperature of formulations. The formulations were also evaluated for drug content, in vitro drug diffusion properties and skin irritation testing. In vivo evaluation of formulations was carried out by hot plate and writhing test method, and finally the optimized formulation was subjected to stability studies. The developed formulations were easily washable, smooth in feel, and showed no clogging which indicate superior texture of system. Formulation, containing pluronic showed greater spreadability and higher drug diffusion rate as compared to pluronic free organogel. Drug content of organogel formulations was in the range of 94-97%. The pH of the formulations was 6.48 ± 0.5 and 6.98 ± 0.1, reflecting no risk of skin irritation. Pluronic not only enhances the stability of organogel by increasing the viscosity (from 6,541 ± 234.76 to 7,826 ± 155.65 poise) but also increases the release of drug from 67.39 ± 1.53% to 74.21 ± 1.7%. The sumatriptan exhibits higher and long lasting antinociceptive effect as indicated by the persistent increase in reaction time in hot plate and inhibited abdominal contraction in acetic acid-induced writhing test (p < 0.05). The prepared optimized formulation was found to be stable without any significant changes at room temperature.  相似文献   

6.
We investigated the shearing effect in the thermo-mechanical properties of candelilla wax (CW) and candelilla wax–tripalmitin (CW-TP) organogels developed using safflower oil as the liquid phase. A shear rate of 600 s−1 was applied during cooling (1 °C/min) of 3% CW and 3% CW-1% TP solutions, until reaching nucleation (i.e., 47 °C) or metastable conditions (i.e., 52 °C) then allowing the development of the organogel under quiescent conditions at 15 °C. The thermal and rheological properties of these organogels were compared with the ones of organogels developed under static conditions. The X-ray results showed that under static conditions the CW crystallized in an orthorhombic ( O ^ ) \left( {{{\hbox{O}}_{ \bot }}} \right) subcell packing with a lateral stacking with a length (L) equivalent to the hydrocarbon chain’s length. During organogelation of the 3% CW-1% TP solution, CW and TP co-crystallized in a O ^ {{\hbox{O}}_{ \bot }} subcell packing with TP in a 2L stacking organization. The application of shearing did not modify the molecular packing of the crystals or the melting properties of the organogels. However, the CW and CW-TP organogels developed with shearing showed the formation of larger crystals (i.e., fiber-like or plate-like) in comparison with the ones developed under static conditions. The presence of 1% TP increased the solid fat content, and thus the CW-TP organogels showed higher elasticity (G′) than CW organogels. The organogels developed with the application of shearing until reaching metastable conditions (i.e., CW 52 °C and CW-TP 52 °C) had the highest G′ and yield stress of all organogels investigated. In the same way, creep and recovery analyses showed that CW 52 °C and CW-TP 52 °C organogels had the highest resistance to deformation, lowest instantaneous recovery, and highest extended recovery of all organogels studied. We concluded that application of shear and the extent of its application as a function of supercooling determine crystal size and the proportion of transient to junction zones throughout the three-dimensional crystal network and, therefore, the organogels' rheological properties.  相似文献   

7.
In this research, we studied the relationship between the molecular structure of (R)-12-hydroxyoctadecanamide, (R)-N-propyl-12-hydroxyoctadecanamide, and (R)-N-octadecyl-12-hydroxyoctadecanamide and the thermo-mechanical properties of their 2% (wt/wt) organogels developed using safflower oil high in oleic acid (HOSFO) as the liquid phase. Candelilla wax (CW), a well-known edible gelling additive whose main component is hentriacontane, also was studied for comparative purposes. The results obtained show that the attractive interactions (i.e., hydrogen bonding and dipolar interactions) between amide groups and between hydroxyl groups present in the amides resulted in organogels with higher melting temperature, heat of melting, and crystallization parameters than those found in the CW organogel. The rheological parameters associated to the strength of the amide or CW-based gels developed in HOSFO (i.e., yield stress and elastic modulus) seem to be associated with the nature of amide groups (i.e., primary or secondary amide) and the increase in the length of the self-assembly molecular unit (i.e., L value determined by X-ray diffraction) and therefore to the extent of London dispersion forces along the hydrocarbon chain. The creep and recovery measurements allowed an evaluation among the internal structures of the different organogels and demonstrated that independent of the hydrogen bonding and dipolar interaction provided by the amide and the hydroxyl groups, the increase in the hydrocarbon chain length results in higher organogel resistance to deformation and higher instant recovery capacity. However, the stabilization of the self-assembly unit through polar groups (i.e., –CONH2 in HOA) reduces organogel elasticity but provides a higher extended recovery capacity. The results reported in this investigation showed some relationships between gelator structure and the thermo-mechanical properties of low-molecular-mass organic gelator amides. Our long-term objective is to understand the organogelation process to eventually develop trans-free vegetable oil-based food products with novel textures for the consumers.  相似文献   

8.
Herein, we report the successful development of a novel nanosystem capable of an efficient delivery and temperature-triggered drug release specifically aimed at cancer. The water-soluble 130.1 ± 0.2 nm iron oxide nanoparticles (IONPs) were obtained via synthesis of a monodispersed iron oxide core stabilized with tetramethylammonium hydroxide pentahydrate (TMAOH), followed by coating with the thermoresponsive copolymer poly-(NIPAM-stat-AAm)-block-PEI (PNAP). The PNAP layer on the surface of the IONP undergoes reversible temperature-dependent structural changes from a swollen to a collapsed state resulting in the controlled release of anticancer drugs loaded in the delivery vehicle. We demonstrated that the phase transition temperature of the prepared copolymer can be precisely tuned to the desired value in the range of 36°C–44°C by changing the monomers ratio during the preparation of the nanoparticles. Evidence of modification of the IONPs with the thermoresponsive copolymer is proven by ATR-FTIR and a quantitative analysis of the polymeric and iron oxide content obtained by thermogravimetric analysis. When loaded with doxorubicin (DOX), the IONPs-PNAP revealed a triggered drug release at a temperature that is a few degrees higher than the phase transition temperature of a copolymer. Furthermore, an in vitro study demonstrated an efficient internalization of the nanoparticles into the cancer cells and showed that the drug-free IONPs-PNAP were nontoxic toward the cells. In contrast, sufficient therapeutic effect was observed for the DOX-loaded nanosystem as a function of temperature. Thus, the developed temperature-tunable IONPs-based delivery system showed high potential for remotely triggered drug delivery and the eradication of cancer cells.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0131-x) contains supplementary material, which is available to authorized users.KEY WORDS: drug delivery, IONPs, remote-triggered drug release, thermoresponsive copolymer, tunable LCST  相似文献   

9.
A nondisintegrating, floating asymmetric membrane capsule (FAMC) was developed to achieve site-specific osmotic flow of a highly water-soluble drug, ranitidine hydrochloride (RHCl), in a controlled manner. Solubility suppression of RHCl was achieved by the common ion effect, using optimized coated sodium chloride as a formulation component. The capsular wall of FAMC was prepared by the phase inversion process wherein the polymeric membrane was precipitated on glass pins by dipping them in a solution of cellulose acetate followed by quenching. Central composite design was utilized to investigate the influence of independent variables, namely, level(s) of membrane former, pore former, and osmogen, on percent cumulative drug release (response). The release mechanism of RHCl through FAMC was confirmed as osmotic pumping. The asymmetry of the membrane was characterized by scanning electron microscopy that revealed a dense nonporous outer region of membrane supported by an inner porous region. Differential scanning calorimetry indicated no incompatibility between the drug and excipients. In vitro drug release in three biorelevant media, pH 2.5 (low fed), pH 4.5 (intermediate fed), and pH 6.5 (high fed), demonstrated pH-independent release of RHCl (P > 0.05). Floating ability for 12 h of the optimized FAMC9 was visually examined during the in vitro release studies that showed maximal drug release with zero-order kinetics (r2 = 0.9991). Thus, a novel osmotically regulated floating capsular system was developed for site-specific delivery of RHCl.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9870-8) contains supplementary material, which is available to authorized users.KEY WORDS: asymmetric membrane capsule, central composite design, floating system, osmotic delivery, ranitidine hydrochloride  相似文献   

10.
The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.KEY WORDS: atomic force microscopy, calorimetry (DSC), FTIR, particle size, solid lipid nanoparticles  相似文献   

11.
Niosomal vesicle, as a unique novel drug delivery system, is synthesized by non-ionic surfactants. Both hydrophilic and lipophilic drugs and also biomacromolecular agents, such as peptides and proteins can be encapsulated in this vesicular particle. Regarding polypeptide-based component loading, and delivery potential of the niosome, some valuable studies have been conducted in recent years. However, exploring the full potential of this approach requires fine tuned optimization and characterization approaches. Therefore, this study was conducted to achieve the following two goals. First, formulation and optimization of bovine serum albumin (BSA) load and release behavior as a function of cholesterol (CH) to sorbitan monostearate (Span 60) molar ratio. Second, investigating a cost- and time-effective polypeptide detecting method via methyl orange (MO) dye. To this aim, BSA-loaded niosomes were prepared by reversed-phase evaporation technique. The effect of CH to Sorbitan monostearate (Span 60) molar ratio on noisome entrapment efficiency (EE%) and release profile of BSA was studied using a ultraviolet (UV) spectrophotometer technique (NanoDrop 2000/2000c).Niosome with a 60% CH content showed the highest BSA EE% and release behavior. Then, BSA was dyed using MO in an acidic solution and used in BSA-niosome formulation. The MO-colored protein, loaded into the vesicles, was successfully assessed by an inverted light microscope, in order to observe the protein location in the vesicle. The results obtained in this study can be useful for various applications in different fields, including pharmaceutical, cosmetics, and drug delivery in biomedical and tissue engineering.  相似文献   

12.
This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity.  相似文献   

13.
Pyranone derivative I was isolated from fermented broth of isolated marine bacterial strain Vibrio sp. SKMARSP9. The compound I was characterized, and evaluated for its antimicrobial properties. The isolated strain was identified based on 16S rRNA based phylogenetic analysis. The molecular analysis data suggested that this strain is closely related to Vibrio ruber, Vibrio sp. MSSRF10 and Vibrio rhizosphaerae. The best fermentative growth of this isolate was achieved under halophilic conditions and grew efficiently at 30 °C in the presence of 12 % NaCl. The compound I production by this strain is associated with growth. The unpurified extract is hydrophobic in nature, and released only during late growth phase. The extract was purified and characterized by spectral data using NMR, DEPT, and ESI–MS. The purity of I was 97 % which was confirmed by HPLC. The pyranone derivative I exhibited >50 % antioxidant activity and broad spectrum antimicrobial properties against gram negative and gram positive strains. Molecular docking analysis revealed that this pyranone derivative I may be a potential candidate at pharmaceutical sector.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0521-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film within a rotatory evaporator. This thin film was hydrated with a sodium selenite (5.8 μM) solution to form multilamellar vesicles and homogenized under high pressure to yield unilamellar nanoliposomes. Se-loaded nanoliposomes were mannosylated by 0.1% w/v mannosamine (Man-Lip-Se) prior to being lyophilized. Mannosamine concentration was optimized with cellular uptake studies in M receptor expressing cells. Non-lyophilized and lyophilized Man-Lip-Se were characterized for size, zeta potential, and entrapment efficiency. The influence of liposomal composition on the characteristics of Man-Lip-Se were evaluated using acidic and basic medium for 24 h. Thermal analysis and powder X-ray diffraction were used to determine the interaction of components within the Man-Lip-Se. The size, zeta potential and entrapment efficiency of the optimum Man-Lip-Se were observed to be 158 ± 28.9 nm, 33.21 ± 0.89 mV, and 77.27 ± 2.34%, respectively. An in vitro Se release of 70–75% up to 24 h in PBS pH 6.8 and <8% Se release in acidic media (0.1 N HCl) in 1 h was observed. The Man-Lip-Se were found to withstand gastric-like environments and showed sustained release. Stable freeze-dried Man-Lip-Se were successfully formulated with a size of <200 nm, ∼75% entrapment, and achieved controlled release of Se with stability under acidic media, which may be of importance in the targeted delivery of Se to the immune system.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-013-9988-3) contains supplementary material, which is available to authorized users.Key words: mannosylation, nanoliposome, selenium, thermal properties  相似文献   

15.
Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYLTM T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.  相似文献   

16.
17.
The study was undertaken to investigate the effect of sesame oil in hypertensive patients who were on antihypertensive therapy either with diuretics (hydrochlorothiazide) or ß-blockers (atenolol). Thirty-two male and 18 female patients aged 35 to 60 years old were supplied sesame oil (Idhayam gingelly oil) and instructed to use it as the only edible oil for 45 days. Blood pressure, anthropometry, lipid profile, lipid peroxidation, and enzymic and non-enzymic antioxidants were measured at baseline and after 45 days of sesame oil substitution. Substitution of sesame oil brought down systolic and diastolic blood pressure to normal. The same patients were asked to withdraw sesame oil consumption for another 45 days, and the measurements were repeated at the end of withdrawal period. Withdrawal of sesame oil substitution brought back the initial blood pressure values. A significant reduction was noted in body weight and body mass index (BMI) upon sesame oil substitution. No significant alterations were observed in lipid profile except triglycerides. Plasma levels of sodium reduced while potassium elevated upon the substitution of sesame oil. Lipid peroxidation (thiobarbituric acid reactive substances [TBARS]) decreased while the activities of superoxide dismutase (SOD), catalase (CAT), and the levels of vitamin C, vitamin E, ß-carotene, and reduced glutathione (GSH) were increased. The results suggested that sesame oil as edible oil lowered blood pressure, decreased lipid peroxidation, and increased antioxidant status in hypertensive patients.  相似文献   

18.
The thermal behavior, moisture adsorption properties and structural and morphological characteristics of mango powders were evaluated. The powders were obtained by foam mat drying methodology using albumin (ALB), mixture (EB) of monoglycerides of fatty acids, sorbitan monostearate and polyoxyethylene sorbitan monostearate and a combination of the two (EB-ALB) as foaming agents. The evaluation was done by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the moisture adsorption isotherms were also determined. The powder with EB had a glass transition temperature (Tg) of ?4.2 °C. The denaturation temperature of pure albumin (82.2 °C) increased in the powders with ALB to 117 °C and in those with EB-ALB to 102 °C, due to the thermal stability provided by the pulp sugars. The moisture sorption isotherm of the EB-powder showed a higher water equilibrium content than the other powders. All the powders were in the amorphous state. The morphology of the powder with EB showed corrugated particles, whereas those with ALB and EB-ALB showed particles with a less porous aspect and more compact surfaces than the powders with EB.  相似文献   

19.
The influence of the vehicle on the release and permeation of fluconazole, a topical antifungal drug dissolved in Jojoba oil was evaluated. Series of Cutina lipogels (Cutina CPA [cetyl palmitate], CBS [mixture of glyceryl stearate, cetearyl alcohol, cetyl palmitate, and cocoglycerides], MD [glyceryl stearate], and GMS [glyceryl monostearate]) in different concentrations as well as gel microemulsion were prepared. In-vitro drug release in Sorensens citrate buffer (pH 5.5) and permeation through the excised skin of hairless mice, using a modified Franz diffusion cell, were performed. The rheological behavior and the apparent viscosity values for different gel bases were measured before and after storage under freezing conditions at −4 °C and were taken as measures for stability of network structure.Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved. The results of in vitro drug release and its percutaneous absorption showed that the highest values from gel microemulsion were assured. The rheological behavior of the prepared systems showed pseudoplastic (shear-thinning) flow indicating structural breakdown of the existing intermolecular interactions between polymeric chains. Moreover, the stability study revealed no significant difference between viscosity before and after storage for different formulae except for CPA Cutina lipogel (using analysis of variance [ANOVA] test at level of significance .05). The antifungal activity of fluconazole showed the widest zone of inhibition with gel microemulsion. The gel microemulsion is an excellent vehicle for fluconazole topical drug delivery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号