首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers.  相似文献   

2.

Objective

To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats.

Methods

Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high intensity uphill running on a treadmill for four minutes (at 85–90% of maximal oxygen consumption) for five days/week. After three weeks of HIIT, rats were mated. After six weeks (gestational day 20 in pregnant rats), echocardiography was performed to evaluate maternal cardiac function. Real-time PCR was performed for the quantification of gene expression, and oxidative stress and total antioxidant capacity was assessed in the tissue samples.

Results

Maternal heart weight and systolic function were not affected by HIIT or pregnancy. In the maternal heart, expression of 11 of 22 genes related to cardiac remodeling was influenced by pregnancy but none by HIIT. Litter size, fetal weight and placental weight were not affected by HIIT. Total antioxidant capacity, malondialdehyde content, peroxidase and superoxide dismutase activity measured in the placenta, fetal heart and liver were not influenced by HIIT. HIIT reduced the expression of eNOS (p = 0.03), hypoxia-inducible factor 1α (p = 0.04) and glutathione peroxidase 4.2 (p = 0.02) in the fetal liver and increased the expression of vascular endothelial growth factor-β (p = 0.014), superoxide dismutase 1 (p = 0.001) and tissue inhibitor of metallopeptidase 3 (p = 0.049) in the fetal heart.

Conclusions

Maternal cardiac function and gene expression was not affected by HIIT. Although HIIT did not affect fetal growth, level of oxidative stress and total antioxidant capacity in the fetal tissues, some genes related to oxidative stress were altered in the fetal heart and liver indicating that protective mechanisms may be activated.  相似文献   

3.
4.
5.

Background

Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1–7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1–7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF.

Methods/Main Results

Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1–7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1–7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle.

Conclusions

Exercise training causes a shift in RAS towards the Ang-(1–7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.  相似文献   

6.
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.  相似文献   

7.

Objective

To investigate the therapeutic effects of renal denervation (RD) on post- myocardial infarction (MI) cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects.

Methods

One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n = 10), MI group(MI, n = 20),RD group (RD, n = 10), RD3+MI (MI three days after RD, n = 20), MI1+RD (RD one day after MI, n = 20), MI7+RD (RD seven days after MI, n = 20). MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI.

Results

(1) The left ventricular function of the MI group significantly declined (EF<40%), plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2) Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3) In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75±8.4%,69±3.8%,73±5.5%), hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3±5 ml,23.8±5.4 ml,25.2±8.7 ml). However, the urinary sodium excretion also increased but without significant difference.

Conclusions

RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.  相似文献   

8.

Introduction

Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT.

Methods

Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)).

Results

Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.).

Conclusion

Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III.

Trial Registration

Nederlands Trial Register NTR3671  相似文献   

9.
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.  相似文献   

10.
The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI.  相似文献   

11.
Reactive oxygen species (ROS) are highly reactive, oxygen-containing molecules that can cause molecular damage within the cell. While the accumulation of ROS-mediated damage is widely believed to be one of the main causes of aging, ROS also act in signaling pathways. Recent work has demonstrated that increasing levels of superoxide, one form of ROS, through treatment with paraquat, results in increased lifespan. Interestingly, treatment with paraquat robustly increases the already long lifespan of the clk-1 mitochondrial mutant, but not other long-lived mitochondrial mutants such as isp-1 or nuo-6. To genetically dissect the subcellular compartment in which elevated ROS act to increase lifespan, we deleted individual superoxide dismutase (sod) genes in clk-1 mutants, which are sensitized to ROS. We find that only deletion of the primary mitochondrial sod gene, sod-2 results in increased lifespan in clk-1 worms. In contrast, deletion of either of the two cytoplasmic sod genes, sod-1 or sod-5, significantly decreases the lifespan of clk-1 worms. Further, we show that increasing mitochondrial superoxide levels through deletion of sod-2 or treatment with paraquat can still increase lifespan in clk-1;sod-1 double mutants, which live shorter than clk-1 worms. The fact that mitochondrial superoxide can increase lifespan in worms with a detrimental level of cytoplasmic superoxide demonstrates that ROS have a compartment specific effect on lifespan – elevated ROS in the mitochondria acts to increase lifespan, while elevated ROS in the cytoplasm decreases lifespan. This work also suggests that both ROS-dependent and ROS-independent mechanisms contribute to the longevity of clk-1 worms.  相似文献   

12.
摘要 目的:探讨高强度间歇训练心脏康复对冠心病患者经皮冠状动脉介入(PCI)术后心脏功能及应激因子的影响。方法:选择我院于2017年3月至2019年3月行PCI术冠心病患者86例,采用随机数字表法随机分为观察组43例与对照组43例。观察组患者采用高强度间歇训练心脏康复,对照组患者采用常规心脏康复。两组疗程均为12周。比较两组康复前后心脏功能、运动耐力、应激因子及生活质量影响。结果:观察组康复后左室射血分数(LVEF)和心输出量高于对照组(P<0.05)。观察组康复后峰值功率(PP)、运动持续时间(ED)和峰值摄氧量(VQ2peak)高于对照组(P<0.05)。观察组康复后C反应蛋白(CRP)、肿瘤坏死因子-α(TNF-α)和白介素-6(IL-6)水平低于对照组(P<0.05)。观察组康复后心绞痛稳定程度、疾病主观感受、躯体活动受限程度、心绞痛发作频率和治疗满意程度评分高于对照组(P<0.05)。结论:高强度间歇训练心脏康复可改善冠心病PCI术后心脏功能,减轻应激反应,改善患者运动耐力及生活质量。  相似文献   

13.

Aims

Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols.

Methods

12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities.

Results

VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF.

Conclusion

Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.  相似文献   

14.
15.

Objectives

Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines.

Methods and Results

We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness.

Conclusions

Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.  相似文献   

16.
17.
Cardiac fibrosis is a deleterious consequence of hypertension which may further advance to heart failure and increased matrix metalloproteinase-9 (MMP-9) contributes to the underlying mechanism. Therefore, new therapeutic strategies to attenuate the effects of MMP-9 are urgently needed. In the present study, we characterize salvianolic acid A (SalA) as a novel MMP-9 inhibitor at molecular, cellular and animal level. We expressed a truncated form of MMP-9 which contains only the catalytic domain (MMP-9 CD), and used this active protein for enzymatic kinetic analysis and Biacore detection. Data generated from these assays indicated that SalA functioned as the strongest competitive inhibitor of MMP-9 among 7 phenolic acids from Salvia miltiorrhiza. In neonatal cardiac fibroblast, SalA inhibited fibroblast migration, blocked myofibroblast transformation, inhibited secretion of intercellular adhesion molecule (ICAM), interleukin-6 (IL-6) and soluble vascular cell adhesion molecule-1 (sVCAM-1) as well as collagen induced by MMP-9 CD. Functional effects of SalA inhibition on MMP-9 was further confirmed in cultured cardiac H9c2 cell overexpressing MMP-9 in vitro and in heart of spontaneously hypertensive rats (SHR) in vivo. Moreover, SalA treatment in SHR resulted in decreased heart fibrosis and attenuated heart hypertrophy. These results indicated that SalA is a novel inhibitor of MMP-9, thus playing an inhibitory role in hypertensive fibrosis. Further studies to develop SalA and its analogues for their potential clinical application of cardioprotection are warranted.  相似文献   

18.

Background

Polycystic ovary syndrome is a common endocrinopathy in reproductive-age women, and associates with insulin resistance. Exercise is advocated in this disorder, but little knowledge exists on the optimal exercise regimes. We assessed the effects of high intensity interval training and strength training on metabolic, cardiovascular, and hormonal outcomes in women with polycystic ovary syndrome.

Materials and Methods

Three-arm parallel randomized controlled trial. Thirty-one women with polycystic ovary syndrome (age 27.2 ± 5.5 years; body mass index 26.7 ± 6.0 kg/m2) were randomly assigned to high intensity interval training, strength training, or a control group. The exercise groups exercised three times weekly for 10 weeks.

Results

The main outcome measure was change in homeostatic assessment of insulin resistance (HOMA-IR). HOMA-IR improved significantly only after high intensity interval training, by -0.83 (95% confidence interval [CI], -1.45, -0.20), equal to 17%, with between-group difference (p = 0.014). After high intensity interval training, high-density lipoprotein cholesterol increased by 0.2 (95% CI, 0.02, 0.5) mmol/L, with between group difference (p = 0.04). Endothelial function, measured as flow-mediated dilatation of the brachial artery, increased significantly after high intensity interval training, by 2.0 (95% CI, 0.1, 4.0) %, between-group difference (p = 0.08). Fat percentage decreased significantly after both exercise regimes, without changes in body weight. After strength training, anti-Müllarian hormone was significantly reduced, by -14.8 (95% CI, -21.2, -8.4) pmol/L, between-group difference (p = 0.04). There were no significant changes in high-sensitivity C-reactive protein, adiponectin or leptin in any group.

Conclusions

High intensity interval training for ten weeks improved insulin resistance, without weight loss, in women with polycystic ovary syndrome. Body composition improved significantly after both strength training and high intensity interval training. This pilot study indicates that exercise training can improve the cardiometabolic profile in polycystic ovary syndrome in the absence of weight loss.

Trial Registration

ClinicalTrial.gov NCT01919281  相似文献   

19.
目的:观察卡维地洛对慢性心力衰竭患者神经内分泌及心功能的影响.方法:60例慢性心力衰竭患者随机分为对照组(n=30)和卡维地洛组(n=30).对照组给予洋地黄、利尿剂、血管紧张素转化酶抑制剂等常规治疗;卡维地洛组在给予常规治疗的基础上加用卡维地洛,从小剂量(3.125mg,1次/天)逐渐加至靶剂量(12.5mg,2次/天或3次/天)治疗6个月.治疗前及治疗6个月后放射免疫法测定血浆血管紧张素Ⅱ(Ang Ⅱ)及内皮素-1(ET-1)水平,超声心动图检测心功能.结果:两组治疗后较治疗前Ang Ⅱ及ET-1水平显著降低,卡维地洛组改善更明显(P<0.01);两组左房内径、左室舒张末期内径(LVEDD)和左室收缩末期内径(LVESD)明显缩短(P<0.01),左室射血分数(LVEF)显著增高(P<0.01).结论:卡维地洛抑制心衰患者的神经内分泌激活,逆转心室重塑,改善心功能.  相似文献   

20.

Background

There is limited knowledge about atrial myocyte Ca2+ handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca2+ handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction.

Methods and results

Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01) and time to relaxation was prolonged (p<0.01) in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca2+ amplitude, decreased SR Ca2+ content, and slower Ca2+ transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca2+ ATPase activity, increased Na+/Ca2+-exchanger activity and increased diastolic Ca2+ leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca2+ handling in HF.

Conclusion

Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca2+ handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号