首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (−β, −7, −β/7, −13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.  相似文献   

2.
The tumor suppressor adenomatous polyposis coli (APC) negatively regulates Wingless (Wg)/Wnt signal transduction by helping target the Wnt effector beta-catenin or its Drosophila homologue Armadillo (Arm) for destruction. In cultured mammalian cells, APC localizes to the cell cortex near the ends of microtubules. Drosophila APC (dAPC) negatively regulates Arm signaling, but only in a limited set of tissues. We describe a second fly APC, dAPC2, which binds Arm and is expressed in a broad spectrum of tissues. dAPC2's subcellular localization revealed colocalization with actin in many but not all cellular contexts, and also suggested a possible interaction with astral microtubules. For example, dAPC2 has a striking asymmetric distribution in neuroblasts, and dAPC2 colocalizes with assembling actin filaments at the base of developing larval denticles. We identified a dAPC2 mutation, revealing that dAPC2 is a negative regulator of Wg signaling in the embryonic epidermis. This allele acts genetically downstream of wg, and upstream of arm, dTCF, and, surprisingly, dishevelled. We discuss the implications of our results for Wg signaling, and suggest a role for dAPC2 as a mediator of Wg effects on the cytoskeleton. We also speculate on more general roles that APCs may play in cytoskeletal dynamics.  相似文献   

3.
The O-linked β-N-acetylglucosamine(O-GlcNAc)ylation of cytoplasmic and nuclear proteins regulates basic cellular functions and is involved in the etiology of neurodegeneration and diabetes. Intracellular O-GlcNAcylation is catalyzed by a single O-GlcNAc transferase, O-GlcNAc transferase(OGT). Recently, an atypical O-GlcNAc transferase, extracellular O-linked β-N-acetylglucosamine(EOGT), which is responsible for the modification of extracellular O-GlcNAc, was identified. Although both OGT and EOGT are regulated through the common hexosamine biosynthesis pathway, EOGT localizes to the lumen of the endoplasmic reticulum and transfers GlcNAc to epidermal growth factor-like domains in an OGT-independent manner. In Drosophila, loss of Eogt gives phenotypes similar to those caused by defects in the apical extracellular matrix. Dumpy, a membrane-anchored apical extracellular matrix protein, was identified as a major O-GlcNAcylated protein, and EOGT mediates Dumpy-dependent cell adhesion. In mammals, extracellular O-GlcNAc was detected on extracellular proteins including heparan sulfate proteoglycan 2, Nell1, laminin subunit alpha-5, Pamr1, and transmembrane proteins, including Notch receptors. Although the physiological function of O-GlcNAc in mammals has not yet been elucidated, exome sequencing identified homozygous EOGT mutations in patients with Adams-Oliver syndrome, a rare congenital disorder characterized by aplasia cutis congenita and terminal transverse limb defects. This review summarizes the current knowledge of extracellular O-GlcNAc and its implications in the pathological processes in Adams-Oliver syndrome.  相似文献   

4.
Gandy JC  Rountree AE  Bijur GN 《FEBS letters》2006,580(13):3051-3058
The Ser/Thr kinase Akt1 is activated by growth factors subsequent to its phosphorylation on Thr308 and Ser473. In the present study, Akt1 was found to be constitutively modified with O-GlcNAc. Treatment of SH-SY5Y cells with O(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), which inhibits the enzymatic removal of O-GlcNAc from proteins, increased cytosolic O-GlcNAc-Akt1 levels. Treatment of cells with insulin-like growth factor-1 (IGF-1) also increased O-GlcNAc-Akt1 levels and increased Akt1 phosphorylation. PUGNAc treatment did not attenuate IGF-1 induced Akt1 phosphorylation. These results indicate that Akt1 can be simultaneously modified with O-GlcNAc and phosphorylated. However, PUGNAc induced the nuclear accumulation of Akt1 suggesting that the O-GlcNAc-modification on Akt1 may play a role in Akt1 nuclear localization.  相似文献   

5.
Through silencing tumor suppressor genes, epigenetic changes can activate signaling pathways important to cancer development. In this report, we found an epigenetic contribution to the aberrant activation of wnt signaling in human gastric cancer. CXXC4 (CXXC finger protein 4) was identified as a novel target of EZH2 (enhancer of zeste homolog 2), and EZH2 promotes the activation of wnt singaling by downregulating CXXC4 expression. CXXC4 inhibits the growth of gastric cancer cells both in vitro and in vivo through inactivating wnt signaling. In contrast, depletion of CXXC4 activates wnt signaling and promotes the anchorage-independent growth of nontumor gastric epithelial cells. CXXC4 is downregulated in gastric carcinoma tissues and its downregulation is associated with poor outcome of gastric cancer patients (hazard ratio: 5.053, P<0.05). Through its binding to dishevelled (Dvl), CXXC4 stabilizes the destruction complex of β-catenin to inhibit wnt signaling. Two critical amino acid residues in CXXC4, K161 and T162 were found to be important to its binding to Dvl and the growth inhibitory effect of CXXC4. In summary, EZH2 promotes the activation of wnt signaling in gastric carcinogenesis through the downregulation of CXXC4 expression. CXXC4 is a novel potential tumor suppressor directly regulated by EZH2, and its expression is a significant prognosis factor for patients with early stages of gastric cancer.  相似文献   

6.
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.  相似文献   

7.
8.
9.
Drosophila melanogaster has been considered a model organism for investigating human diseases and genetic pathways. Whether Drosophila is an ideal model for nutrigenomics, especially for FA metabolism, however, remains to be illustrated. The aim of this study was to examine the metabolism of C20 and C22 PUFAs in Drosophila. Analysis of FA composition revealed a complete lack of C20 and C22 PUFAs in the body tissue of larvae, pupae, and adult flies fed either a base or supplemented diet abundant in the PUFA precursors linoleic acid and α-linolenic acid. PUFA with >C20 could only be found in flies supplemented with specific FAs. Interestingly, the supplemented C22 PUFAs docosahexaenoic acid (22:6n-3) and docosatetraenoic acid (22:4n-6) were largely converted to the shorter chain C20 PUFAs eicosapentaenoic acid (20:5n-3) and arachidonic acid (20:4n-6), respectively. Furthermore, a genome sequence scan indicated that no gene encoding Δ-6/ Δ-5 desaturases, the key enzymes for the synthesis of C20/C22 PUFA, was present in Drosophila. These findings demonstrate that Drosophila lacks the capability to synthesize the biologically important C20 and C22 PUFAs, and thereby argue that Drosophila is not a valid model for the study of lipid metabolism and related diseases.  相似文献   

10.
11.
The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polβ/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polβ 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polβ/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein–protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polβ than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polβ/XRCC1 complex formation, polβ and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.  相似文献   

12.
Mono-O-glycosylations post-translationally regulate the activity of nucleocytoplasmic proteins. We showed that glucosamine and an inhibitor of deglycosylation (PUGNAc) induced O-glycosylation of FoxO1, resulting in increased expression of a glucose-6-phosphatase reporter gene. This effect was independent of FoxO1 re-localisation, since it was also observed with constitutively nuclear FoxO1-AAA mutant. Moreover, in HepG2 cells, glucosamine and PUGNAc have a synergistic effect on the glucose-6-phosphatase reporter gene, and this effect was inhibited by FoxO1 siRNAs. Since glucose-6-phosphatase plays a key role in hepatic glucose production, our observation may be of importance with regard to glucotoxicity associated with chronic hyperglycaemia in diabetes.  相似文献   

13.
Inducing gamma oscillations with non‐invasive light flicker has been reported to impact Alzheimer''s disease‐related pathology. However, it is unclear which signaling pathways are involved in reducing amyloid load. Here, we found that gamma frequency light flicker increased anchoring of amyloid precursor protein (APP) to the plasma membrane for non‐amyloidogenic processing, and then physically interacted with KCC2, a neuron‐specific K+‐Cl cotransporter, suggesting that it is essential to maintain surface GABAA receptor α1 levels and reduce β‐amyloid (Aβ) production. Stimulation with such light flicker limited KCC2 internalization and subsequent degradation via both tyrosine phosphorylation and ubiquitination, leading to an increase in surface‐KCC2 levels. Specifically, PKC‐dependent phosphorylation of APP on a serine residue was induced by gamma frequency light flicker, which was responsible for maintaining plasma membrane levels of full‐length APP, leading to its reduced trafficking to endosomes and inhibiting the β‐secretase cleavage pathway. The activated PKC from the gamma frequency light flicker subsequently phosphorylated serine of KCC2 and stabilized it onto the cell surface, which contributed to the upregulation of surface GABAA receptor α1 levels. Together, these data indicate that enhancement of APP trafficking to the plasma membrane via light flicker plays a critical modulatory role in reduction of Aβ load in Alzheimer''s disease.  相似文献   

14.
Joseph J  Dasso M 《FEBS letters》2008,582(2):190-196
The nucleoporin Nup358 resides on the cytoplasmic face of the interphase nuclear pore complex (NPC). During metaphase, its recruitment to kinetochores is important for correct microtubule-kinetochore attachment. Here, we report that a fraction of endogenous Nup358 interacts with interphase microtubules through its N-terminal region (BPN). Cells overexpressing the microtubule targeting domain of Nup358 displayed dramatic alteration in the microtubule organization including increased microtubule bundling and stability. Ectopic expression of BPN and full-length Nup358 exhibited significantly higher levels of acetylated microtubules that were resistant to nocodazole, a microtubule depolymerizing agent. Furthermore, RNAi mediated depletion of Nup358 affected polarized stabilization of microtubules during directed cell migration, confirming the in vivo role of Nup358 in regulating interphase microtubules.  相似文献   

15.
One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.  相似文献   

16.
Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B'', and B” non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B''η, B''θ, B''γ, and B''ζ were further classified into a subfamily of B'' called B''η. Here we present results that consolidate the evidence for a role of the B''η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B''θ knockout mutant decreased in comparison with wild type plants. Additionally, B''θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B''ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B''ζ in energy metabolism. This work provides insight into functions of the B''η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments.  相似文献   

17.
The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type.  相似文献   

18.
Protein synthesis must rapidly and repeatedly discriminate between a single correct and many incorrect aminoacyl-tRNAs. We have attempted to measure the frequencies of all possible missense errors by tRNA, tRNA and tRNA. The most frequent errors involve three types of mismatched nucleotide pairs, U•U, U•C, or U•G, all of which can form a noncanonical base pair with geometry similar to that of the canonical U•A or C•G Watson–Crick pairs. Our system is sensitive enough to measure errors at other potential mismatches that occur at frequencies as low as 1 in 500,000 codons. The ribosome appears to discriminate this efficiently against any pair with non-Watson–Crick geometry. This extreme accuracy may be necessary to allow discrimination against the errors involving near Watson–Crick pairing.  相似文献   

19.
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin1A (5-HT1A) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT1AR-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of ∼0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin1A receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.  相似文献   

20.
Cells can not only sense the type of extracellular matrix (ECM) protein that is present in the microenvironment, but they can also sense its density. Here, we investigated the effects of ECM protein density on adipokine secretion and insulin signaling in adipocytes. To this end, 3T3-L1 adipocytes were cultured on the surface of polyacrylamide gels that were coated with gradient densities of a collagen type I and fibronectin mixture. We found that high density ECM causes a decrease in insulin signaling and adiponectin secretion, whereas the secretion of monocyte chemoattractant protein-1 (MCP-1) was increased via the activation of nuclear factor-κB (NF-κB). These results indicate that the density of the ECM directly regulates the inflammatory response and insulin sensitivity of adipocytes.

Structured summary

MINT-7992217: Irs1 (uniprotkb:P35569) physically interacts (MI:0915) with phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha (uniprotkb:P26450) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号