首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult females of the mantis, Tenodera angustipennis, were presented with a wriggling model, consisting of six circular spots positioned in a row horizontally and adjacently. During presentation, this model wriggled like a worm by moving some spots. When the motion of the model was small (the number of moving spots ≤2), the mantis sometimes stalked the model with peering movements but seldom struck it. When the motion was large (the number of moving spots ≥3), the mantis frequently fixated, rapidly approached, and struck the model. These results suggest that the mantis changes its approach behavior depending on the amount of prey motion. Disappearance of some terminal spots at the stationary end hardly affected the rates of fixation, peering, and strike. The model that wriggled at each end elicited lower rates of fixation and strike than the model that wriggled at one end. These results suggest that the mantis responds to only the fastest moving part of the wriggling model when the motion of the model is large. Electronic Publication  相似文献   

2.
    
Mantises can live for many months, are naturally voracious, and feed invariably on live prey. Many species have a propensity for cannibalism and cannot be kept together for most of their life cycle, which makes large-scale rearing typically time-consuming, thus easily becoming prohibitive. This is particularly true for early instars, because they are the most abundant stage of a developmental cohort. Such limitation hinders research on Mantodea which depend on live individuals, such as behavior, physiology, ontogeny, and others. In this work, a simple, low-maintenance “self-service” device is described, which is greatly effective in reducing the time needed for keeping live, individual, small to medium-sized mantises. Trial and error usage and modifications along eight years lead to many improvements, resulting in a nearly optimal device for its target purpose. The final model allows rearing large numbers of mantises while demanding only a fraction of the time demanded by conventional rearing techniques. Key advantages include prevention of cannibalism, the possibility of monitoring mantises individually, and full functioning autonomy of up to several weeks. The new device has ample potential in stimulating and supporting Mantodea research on diverse areas.  相似文献   

3.
Summary The catching behaviour of the praying mantis Sphodromantis viridis is investigated in order to see whether or not the detection of prey size depends on the detection of prey distance. A first experiment demonstrates the mantid's ability to discriminate small differences in prey distance. Next, the preferred prey size is determined for a number of distances with the preference being indicated by the strike rates. The results demonstrate that the mantid's judgements of size are based on a relative (angular) scale rather than on an absolute (millimetre) scale. This is a strong piece of evidence that a relation between size and distance does not exist. Finally, the attack behaviour is analysed in detail, but it turns out that prey size has no effect on the organization of both the lunge of the body and the strike of the raptorial forelegs. Taken together, the findings of this study suggest that mantids localize prey with precision, but they do so without any knowledge of the absolute size of prey.  相似文献   

4.
The in vitro neonatal rat spinal cord preparation is the first mammalian nervous system isolated from the brainstem to the caudal end of the spinal cord. It permits the study of the cellular properties of mammalian locomotor networks and is unique in containing all the nervous structures related to locomotion. Although being a very immature system, this model has been considered as an adult preparation in which mammalian locomotor central pattern generators can be studied in detail. Nevertheless, one can also follow the development of locomotor functions during the perinatal period. Contrary to the adult, all neuroactive substances can directly reach the cellular structures in the brainstem-spinal cord preparation. When a neuroactive substance is applied to the bath, a single rhythmic activity is recorded along the cord. In fact, three rhythms can be isolated: one at the cervical level for the forelimbs, one at the lumbar level for the hind limbs and one in the sacrococcygeal region for the tail. Studies carried out on this preparation deal with three major areas: (1) relations between spontaneous activity and maturation of spinal network, (2) organisation of the different spinal networks, (3) key role of the descending pathways.Abbreviations 5-HT serotonin - ADP after-depolarization - AHP after-hyperpolarization - CPG central pattern generator - E0-E21 embryonic day 0–21 - INs interneurones - MLR mesencephalic locomotor region - MNs motoneurones - NMA N-methyl-d,l-aspartic acid - P0-P21 postnatal day 0–21 - PCPA p-chloro phenylalanin  相似文献   

5.
The problems and beauty of teaching computational neuroscience are discussed by reviewing three new textbooks.  相似文献   

6.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

7.
    
《Current biology : CB》2022,32(20):4530-4537.e2
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

8.
To clarify the differences between the mechanisms of conduction slowing/block and accommodative processes in focal demyelinating neuropathies, this computational study presents the kinetics of the ionic, transaxonal and transmyelin currents defining the intracellular and electrotonic potentials in different segments of human motor nerve fibres. The computations use our previous double cable model of the fibres. The simulated fibres have focal demyelination of internodes, paranodes or both together. The intracellular potentials are defined mainly by the Na(+) current, as the contribution of the K(+) fast and K(+) slow currents to the total nodal ionic current is negligible. The paranodal demyelinations cause an increase in the transaxonal current and a decrease in the transmyelin current at the paranodal segments. However, there is an inverse relationship between the transaxonal and transmyelin currents at the same segments in the cases of internodal demyelination. The internodal ionic channels beneath the myelin sheath do not contribute to the intracellular potentials, but they show a high sensitivity to long-lasting pulses. The slow components of the electrotonic potentials depend on the activation of the channel types in the nodal or internodal axolemma, whereas the fast components of the potentials are determined mainly by the passive cable responses. However, the current kinetics changes (defining the investigated electrotonic changes) are relatively weak. The study summarizes the results from these modelling investigations on the mechanisms underlying the conduction slowing/block and accommodative processes in focal demyelinating neuropathies such as Guillain-Barré syndrome and multifocal motor neuropathy.  相似文献   

9.
    
The investigation of multiple nerve membrane properties by mathematical models has become a new tool to study peripheral neuropathies. In demyelinating neuropathies, the membrane properties such as potentials (intracellular, extracellular, electrotonic) and indices of axonal excitability (strength-duration time constants, rheobases and recovery cycles) can now be measured at the peripheral nerves. This study provides numerical simulations of the membrane properties of human motor nerve fibre in cases of internodal, paranodal and simultaneously of paranodal internodal demyelinations, each of them mild systematic or severe focal. The computations use our previous multi-layered model of the fibre. The results show that the abnormally greater increase of the hyperpolarizing electrotonus, shorter strength-duration time constants and greater axonal superexcitability in the recovery cycles are the characteristic features of the mildly systematically demyelinated cases. The small decrease of the polarizing electrotonic responses in the demyelinated zone in turn leads to a compensatory small increase of these responses outside the demyelinated zone of all severely focally demyelinated cases. The paper summarizes the insights gained from these modeling studies on the membrane property abnormalities underlying the variation in clinical symptoms of demyelination in Charcot-Marie-Tooth disease type 1A, chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome and multifocal motor neuropathy. The model used provides an objective study of the mechanisms of these diseases which up till now have not been sufficiently well understood, because quite different assumptions have been given in the literature for the interpretation of the membrane property abnormalities obtained in hereditary, chronic and acquired demyelinating neuropathies.  相似文献   

10.
According to the adaptive foraging hypothesis of sexual cannibalism, females face a trade-off between mating and consuming a courting male. Because male and prey availability can change seasonally, sexual cannibalism may change with season. However, we are not aware of any work examining how sexual cannibalism in insects relates to the time of season. Here, we examined the seasonal pattern of sexual cannibalism and reproductive behaviour in the sexually cannibalistic praying mantis (Mantis religiosa). We repeatedly collected the last instars of praying mantises from the field and brought them up under natural weather and photoperiod, but standardised feeding and socioecological conditions. After the females reached sexual maturity, we allowed all of the females to mate during two mating trials. In comparison to female praying mantises maturing later in the season, early-maturing females were larger but of poorer body condition on the day of a mating trial (20 days after the adult moult). During the first round of mating trials, early-maturing virgin females cannibalised males more frequently than their late-maturing counterparts. In contrast, late-maturing females that mated in the first round of mating trials were more likely than early-maturing, nonvirgin females to be cannibalistic in the second round of mating trials. The latency time until copulation was correlated with a risk of sexual cannibalism and was longer in early-maturing females. Our study suggests that the date of the last (adult) moult plays an important role in the occurrence of sexual cannibalism.  相似文献   

11.
    
Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance.  相似文献   

12.
An explanatory model is developed to show how synaptic learning mechanisms modeled through spike-timing dependent plasticity (STDP) can result in long-term adaptations consistent with reinforcement learning models. In particular, the reinforcement learning model known as temporal difference (TD) learning has been used to model neuronal behavior in the orbitofrontal cortex (OFC) and ventral tegmental area (VTA) of macaque monkey during reinforcement learning. While some research has observed, empirically, a connection between STDP and TD, there has not been an explanatory model directly connecting TD to STDP. Through analysis of the learning dynamics that results from a general form of a STDP learning rule, the connection between STDP and TD is explained. We further demonstrate that a STDP learning rule drives the spike probability of a reward predicting neuronal population to a stable equilibrium. The equilibrium solution has an increasing slope where the steepness of the slope predicts the probability of the reward, similar to the results from electrophysiological recordings suggesting a different slope that predicts the value of the anticipated reward of Montague and Berns [Neuron 36(2):265–284, 2002]. This connection begins to shed light into more recent data gathered from VTA and OFC which are not well modeled by TD. We suggest that STDP provides the underlying mechanism for explaining reinforcement learning and other higher level perceptual and cognitive function. This material is based upon work supported by the National Science Foundation under Grants No. IOB-0445648 (PDR) and DMS-0408334 (GL) and by a Career Support grant from Portland State University (GL).  相似文献   

13.
In this paper, a mathematical model of the diffusion of cAMP into olfactory cilia and the resulting electrical activity is presented. The model, which consists of two nonlinear differential equations, is studied using perturbation techniques. The unknowns in the problem are the concentration of cAMP, the membrane potential, and the quantity of most interest in this work: the distribution of CNG channels along the length of a cilium. Experimental measurements of the total current during this diffusion process provide an extra boundary condition which helps determine the unknown distribution function. A simple perturbation approximation is derived and used to solve this inverse problem and thus obtain estimates of the spatial distribution of CNG ion channels along the length of a cilium. A one-dimensional computer minimization and a special delay iteration are used with the perturbation formulas to obtain approximate channel distributions in the cases of simulated and experimental data.   相似文献   

14.
    
Understanding the way stimulus properties are encoded in the nerve cell responses of sensory organs is one of the fundamental scientific questions in neurosciences. Different neuronal coding hypotheses can be compared by use of an inverse procedure called stimulus reconstruction. Here, based on different attributes of experimentally recorded neuronal responses, the values of certain stimulus properties are estimated by statistical classification methods. Comparison of stimulus reconstruction results then allows to draw conclusions about relative importance of covariate features. Since many stimulus properties have a natural order and can therefore be considered as ordinal, we introduce a bivariate ordinal probit model to obtain classifications for the combination of light intensity and velocity of a visual dot pattern based on different covariates extracted from recorded spike trains. For parameter estimation, we develop a Bayesian Gibbs sampler and incorporate penalized splines to model nonlinear effects. We compare the classification performance of different individual cell covariates and simple features of groups of neurons and find that the combination of at least two covariates increases the classification performance significantly. Furthermore, we obtain a non‐linear effect for the first spike latency. The model is compared to a naïve Bayesian stimulus estimation method where it yields comparable misclassification rates for the given dataset. Hence, the bivariate ordinal probit model is shown to be a helpful tool for stimulus reconstruction particularly thanks to its flexibility with respect to the number of covariates as well as their scale and effect type.  相似文献   

15.
16.
Zhang YQ  Wu GC 《生理科学进展》2000,31(3):211-216
内源性下行抑制系统在痛传递与调制中具有重要作用。近年来,与这一系统相对的下行易化系统开始引起人们的关注。中枢神经系统通过下行抑制易化系统对外周伤害性信息进行双向调制。5-羟色胺(5-HT)是痛上行调制系统的主要神经递质,电刺激或微量注射兴奋性氨基酸于中缝大核(NMR)或巨细胞网状核(NGC)内,既可兴奋也可抑制脊髓伤害性反应。这种相互矛盾遥效应可能与脊髓内的多种5-HT受体亚型有关。  相似文献   

17.
Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism, connectionism, and computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects.  相似文献   

18.
    
《Neuron》2020,105(2):212-216
  相似文献   

19.
    
The ultimate goal of Computational Neuroscience(CNS) is to use and develop mathematical models and approaches to elucidate brain functions.CNS is a young and highly multidisciplinary field.It heavily interacts with experimental neuroscience and such other research areas as artificial intelligence,robotics,computer vision,information science and machine learning.This paper reviews the history of CNS in China,its current status and the prospects for its future development.Examples of CNS research in China are...  相似文献   

20.
Modeling of consciousness-related phenomena and neuroengineering are fields that are rapidly growing together. We review recent approaches and developments and point out some promising directions of future research: Understanding the dynamics of consciousness states and associated oscillations, pathological oscillations as well as their treatment by stimulation, neuroprosthetics and brain-computer-interface approaches, and stimulation approaches that probe, influence and strengthen memory consolidation. In all these fields, computational models connect theory, neurophysiology and neuroengineering research and pave a way towards medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号