首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose to develop an integrated rapid, semiportable, prototype point microbial detection/identification system for clinical specimens that is also capable of differentiating microbial bioterrorism attacks from threats or hoaxes by defining the pathogen. The system utilizes "flash" extraction/analytical system capable of detection/identification of microbes from environmental and clinical matrices. The system couples demonstrated technologies to provide quantitative analysis of lipid biomarkers of microbes including spores in a system with near-single cell (amol/microl) sensitivity. Tandem mass spectrometry increases specificity by providing the molecular structure of neutral lipids, phospholipids, and derivatized spore-specific bacterial biomarker, 2,6-dipicolinic acid (DPA) as well as the lipopolysaccharide-amide-linked hydroxy-fatty acids (LPS-ALHFA) of Gram-negative bacteria. The extraction should take about an hour for each sample but multiple samples can be processed simultaneously.  相似文献   

2.
MALDI-TOF is an extensively used mass spectrometry technique in chemistry and biochemistry. It has been also applied in medicine to identify molecules and biomarkers. Recently, it has been used in microbiology for the routine identification of bacteria grown from clinical samples, without preparation or fractionation steps. We and others have applied this whole-cell MALDI-TOF mass spectrometry technique successfully to eukaryotic cells. Current applications range from cell type identification to quality control assessment of cell culture and diagnostic applications. Here, we describe its use to explore the various polarization phenotypes of macrophages in response to cytokines or heat-killed bacteria. It allowed the identification of macrophage-specific fingerprints that are representative of the diversity of proteomic responses of macrophages. This application illustrates the accuracy and simplicity of the method. The protocol we described here may be useful for studying the immune host response in pathological conditions or may be extended to wider diagnostic applications.  相似文献   

3.
4.
Anammox bacteria present in wastewater treatment systems and marine environments are capable of anaerobically oxidizing ammonium to dinitrogen gas. This anammox metabolism takes place in the anammoxosome which membrane is composed of lipids with peculiar staircase-like 'ladderane' hydrocarbon chains that comprise three or four linearly concatenated cyclobutane structures. Here, we applied high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to elucidate the full identity of these ladderane lipids. This revealed a wide variety of ladderane lipid species with either a phosphocholine or phosphoethanolamine polar headgroup attached to the glycerol backbone. In addition, in silico analysis of genome data gained insight into the machinery for the biosynthesis of the phosphocholine and phosphoethanolamine phospholipids in anammox bacteria.  相似文献   

5.
Lipidomic analysis of bacterial plasmalogens   总被引:1,自引:0,他引:1  
Plasmalogens are a group of lipids with potentially important, and not yet fully known, functions in organisms from bacteria to protozoans, invertebrates, and mammals. They can protect cells against the damaging effects of reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. They have been found in many anaerobic bacterial species, and their biosynthetic pathways differ in aerobic and anaerobic organisms. The use of advanced techniques permits the identification of not only plasmalogen classes but also their positional isomers and often also individual molecular species. This paper describes direct analyses of plasmalogens from natural sources, frequently very unusual, using electrospray ionization mass spectrometry in combination with high-performance liquid chromatography and/or shotgun lipidomics.  相似文献   

6.
The lipids accumulated in organs of patients with Gaucher's, Tay-Sachs, and Fabry's disease were identified by means of the combination of thin-layer chromatography and matrix-assisted secondary ion mass spectrometry. The total lipid extract of each lipidosis tissue was chromatographed on a TLC plate and then analyzed directly by mass spectrometry without elution of the sample from the TLC plate. The amount of material needed to obtain an adequate spectrum is in the order of a few micrograms of lipids per band for both positive and negative ion detection. By scanning the plates, mass spectral and chromatographic information can be obtained simultaneously, which was shown to be useful for the qualitative identification of the components on the plates.  相似文献   

7.
Lipidomics: practical aspects and applications   总被引:3,自引:0,他引:3  
Lipidomics is the characterization of the molecular species of lipids in biological samples. The polar lipids that comprise the bilayer matrix of the constituent cell membranes of living tissues are highly complex and number many hundreds of distinct lipid species. These differ in the nature of the polar group representing the different classes of lipid. Each class consists of a range of molecular species depending on the length, position of attachment and number of unsaturated double bonds in the associated fatty acids. The origin of this complexity is described and the biochemical processes responsible for homeostasis of the lipid composition of each morphologically-distinct membrane is considered. The practical steps that have been developed for the isolation of membranes and the lipids there from, their storage, separation, detection and identification by liquid chromatography coupled to mass spectrometry are described. Application of lipidomic analyses and examples where clinical screening for lipidoses in collaboration with mass spectrometry facilities are considered from the user point of view.  相似文献   

8.
In recent years, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry has become an important bioanalytical method to detect profiles of proteins and peptides derived from whole bacterial cells. This accurate molecular-phenotypic method can be easily applied to robustly detect bacteria on the genus, species and in some cases on the subspecies level. Standardised laboratory protocols for the preparation of abundant bacterial proteins and the development of tailored data analysis software, as well as high-quality databases of microbial reference mass spectra, made the procedure attractive to replace phenotypic or biochemical procedures for identification of bacteria and other microorganisms. Moreover, genotypic and functional mass spectrometry based methods to detect for example bacterial strains or antibiotic resistance may become useful in the coming years. In general, mass spectrometry is a powerful tool to facilitate routine microbial diagnostics.  相似文献   

9.
Autosomal recessive polycystic kidney disease (ARPKD) is a severe, monogenetically inherited kidney and liver disease. PCK rats carrying the orthologous mutant gene serve as a model of human disease, and alterations in lipid profiles in PCK rats suggest that defined subsets of lipids may be useful as molecular disease markers. Whereas MALDI protein imaging mass spectrometry (IMS) has become a promising tool for disease classification, widely applicable workflows that link MALDI lipid imaging and identification as well as structural characterization of candidate disease-classifying marker lipids are lacking. Here, we combine selective MALDI imaging of sulfated kidney lipids and Fisher discriminant analysis (FDA) of imaging data sets for identification of candidate markers of progressive disease in PCK rats. Our study highlights strong increases in lower mass lipids as main classifiers of cystic disease. Structure determination by high-resolution mass spectrometry identifies these altered lipids as taurine-conjugated bile acids. These sulfated lipids are selectively elevated in the PCK rat model but not in models of related hepatorenal fibrocystic diseases, suggesting that they be molecular markers of the disease and that a combination of MALDI imaging with high-resolution MS methods and Fisher discriminant data analysis may be applicable for lipid marker discovery.  相似文献   

10.
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position, as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.  相似文献   

11.
For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers.  相似文献   

12.
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi .  相似文献   

13.
Recent advances in mass spectrometry approaches to the analysis of lipids include the ability to incorporate both lipid class identification with lipid structural information for increased characterization capabilities. The detailed examination of lipids and their biosynthetic and biochemical pathways made possible by novel instrumental and bioinformatics approaches is advancing research in fundamental cellular and medical studies. Recently, high-throughput structural analysis has been demonstrated through the use of rapid gas-phase separation on the basis of the ion mobility (IM) analytical technique combined with mass spectrometry (IM-MS). While IM-MS has been extensively utilized in biochemical research for peptide, protein and small molecule analysis, the role of IM-MS in lipid research is still an active area of development. In this review of lipid-based IM-MS research, we begin with an overview of three contemporary IM techniques which show great promise in being applied towards the analysis of lipids. Fundamental concepts regarding the integration of IM-MS are reviewed with emphasis on the applications of IM-MS towards simplifying and enhancing complex biological sample analysis. Finally, several recent IM-MS lipid studies are highlighted and the future prospects of IM-MS for integrated omics studies and enhanced spatial profiling through imaging IM-MS are briefly described.  相似文献   

14.
Undecaprenyl diphosphate-MurNAc-pentapeptide-GlcNAc (lipid II) is extracted from Escherichia coli cells by utilizing its unusual pH-dependent solubility property in a Bligh-Dyer system, and identified by electrospray ionization mass spectrometry in conjunction with a novel 15N mass shift analysis. The described approach will facilitate the structural characterization of lipid II variants from diverse bacteria, including antibiotic-resistant mutants, as well as the numerous minor uncharacterized lipids present in all biological systems.  相似文献   

15.
A group of unusual sulfonolipids was found in bacteria of the genus Capnocytophaga. One of these lipids, to which we have assigned the trivial name capnine, was isolated in 98% pure form and was identified, by infrared absorption spectrometry, high-resolution mass spectrometry, and other methods, as 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid. Another lipid appears to be an N-acylated version of capnine; after acid hydrolysis, its sulfur was recovered in a form chromatographically indistinguishable from that of capnine. The new lipids are related structurally to sphingosine and the ceramides, respectively, but differ markedly from those compounds in important respects, notably the presence of the sulfonate group. Some Capnocytophaga strains accumulated mostly capnine, whereas others accumulated mostly N-acylcapnine. All seven strains examined were found to contain the new lipids, in amounts ranging from 7 to 16 mumol/g of cells (wet weight). The lipids were found in isolated cell envelopes, where they were present in amounts ranging up to 400 mg/g of envelope protein; they are, accordingly, major cell components.  相似文献   

16.
Novel phosphorylated dihydroceramide (PDHC) lipids produced by the periodontal pathogen Porphyromonas gingivalis include phosphoethanolamine (PE DHC) and phosphoglycerol dihydroceramides (PG DHC) lipids. These PDHC lipids mediate cellular effects through Toll-like receptor 2 (TLR2) including promotion of IL-6 secretion from dendritic cells and inhibition of osteoblast differentiation and function in vitro and in vivo. The PE DHC lipids also enhance (TLR2)-dependent murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. The unique non-mammalian structures of these lipids allows for their specific quantification in bacteria and human tissues using multiple reaction monitoring (MRM)-mass spectrometry (MS). Synthesis of these lipids by other common human bacteria and the presence of these lipids in human tissues have not yet been determined. We now report that synthesis of these lipids can be attributed to a small number of intestinal and oral organisms within the Bacteroides, Parabacteroides, Prevotella, Tannerella and Porphyromonas genera. Additionally, the PDHCs are not only present in gingival tissues, but are also present in human blood, vasculature tissues and brain. Finally, the distribution of these TLR2-activating lipids in human tissues varies with both the tissue site and disease status of the tissue suggesting a role for PDHCs in human disease.  相似文献   

17.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-MS technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. This technique can reveal the distribution of hundreds of ion signals in a single measurement and also helps in understanding the cellular profile of the biological system. MALDI-IMS has already revealed the characteristic distribution of several kinds of lipids in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields, especially in lipidomics. In this review, we describe the methodology and applications of MALDI-IMS to biological samples.  相似文献   

18.
Lipids fulfill multiple specialized roles in neuronal function. In brain, the conduction of electrical impulses, synaptic function, and complex signaling pathways depend on the temporally and spatially coordinated interactions of specialized lipids (e.g., arachidonic acid and plasmalogens), proteins (e.g., ion channels, phospholipases and cyclooxygenases) and integrative lipid-protein interactions. Recent technical advances in mass spectrometry have allowed unparalled insight into the roles of lipids in neuronal function. Through shotgun lipidomics and multidimensional mass spectrometry, in conjunction with the identification of new classes of phospholipases (e.g., calcium dependent and calcium independent intracellular phospholipases), new roles for lipids in cerebral function have been accrued. This review summarizes the advances in our understanding of the types of lipids and phospholipases in the brain and the role of functional lipidomics in increasing our chemical understanding of complex neuronal processes.  相似文献   

19.
Northern peatlands represent a significant global carbon store and commonly originate from Sphagnum moss-dominated wetlands. These ombrotrophic ecosystems are rain fed, resulting in nutrient-poor, acidic conditions. Members of the bacterial phylum Planctomycetes are highly abundant and appear to play an important role in the decomposition of Sphagnum-derived litter in these ecosystems. High-performance liquid chromatography coupled to high-resolution accurate-mass mass spectrometry (HPLC-HRAM/MS) analysis of lipid extracts of four isolated planctomycetes from wetlands of European north Russia revealed novel ornithine membrane lipids (OLs) that are mono-, di-, and trimethylated at the ε-nitrogen position of the ornithine head group. Nuclear magnetic resonance (NMR) analysis of the isolated trimethylornithine lipid confirmed the structural identification. Similar fatty acid distributions between mono-, di-, and trimethylornithine lipids suggest that the three lipid classes are biosynthetically linked, as in the sequential methylation of the terminal nitrogen in phosphatidylethanolamine to produce phosphatidylcholine. The mono-, di-, and trimethylornithine lipids described here represent the first report of methylation of the ornithine head groups in biological membranes. Various bacteria are known to produce OLs under phosphorus limitation or fatty-acid-hydroxylated OLs under thermal or acid stress. The sequential methylation of OLs, leading to a charged choline-like moiety in the trimethylornithine lipid head group, may be an adaptation to provide membrane stability under acidic conditions without the use of scarce phosphate in nutrient-poor ombrotrophic wetlands.  相似文献   

20.
In this study, cellular lipid compositions of two mesophilic sulfate-reducing bacteria were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). In Desulfosarcina variabilis and Desulforhabdus amnigenus, alkylether-containing phospholipids were detected which had previously only been found in significant amounts in deeply branching hyperthermophilic bacteria and archaea. Combining information from HPLC-MS analysis and chemical degradation experiments, ether lipids were identified as 1-alkyl-2-acyl-phosphatidyl ethanolamines, glycerols and cholines. In Desulforhabdus amnigenus, n-penta-, n-hexa- and n-heptadecyl ethers were present (in order of decreasing abundance), whereas Desulfosarcina variabilis solely contained n-hexadecyl ether side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号