首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant’s imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability.  相似文献   

2.
While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r = 0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to the co-dependent relationship between mental and motor processes.  相似文献   

3.
Bensafi M  Rouby C 《Chemical senses》2007,32(3):237-244
We asked whether the large variability in odor imaging ability is underlain by interindividual differences in the processing of smells and emotion. Olfactory imaging ability, anhedonia level, and odor perception were measured in 40 subjects, using the Vividness of Olfactory Imagery Questionnaire (VOIQ), the Physical Anhedonia Scale, and the European Test of Olfactory Capabilities. "Good" olfactory imagers, defined primarily on the basis of the VOIQ, rated pleasant smells as more familiar and had lower anhedonia scores than "bad" olfactory imagers. Based on self-reported measures, these results suggest that, like olfactory perception, the mental imagery of smells is related to emotion and that, beyond their differences in vividness, good and bad olfactory imagers differ in their experience of emotion and long-term memory of smells.  相似文献   

4.
Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.  相似文献   

5.
Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.  相似文献   

6.
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision.We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.  相似文献   

7.
Thinking about personal future events is a fundamental cognitive process that helps us make choices in daily life. We investigated how the imagination of episodic future events is influenced by implicit motivational factors known to guide decision making. In a two-day functional magnetic resonance imaging (fMRI) study, we controlled learned reward association and stimulus novelty by pre-familiarizing participants with two sets of words in a reward learning task. Words were repeatedly presented and consistently followed by monetary reward or no monetary outcome. One day later, participants imagined personal future events based on previously rewarded, unrewarded and novel words. Reward association enhanced the perceived vividness of the imagined scenes. Reward and novelty-based construction of future events were associated with higher activation of the motivational system (striatum and substantia nigra/ ventral tegmental area) and hippocampus, and functional connectivity between these areas increased during imagination of events based on reward-associated and novel words. These data indicate that implicit past motivational experience contributes to our expectation of what the future holds in store.  相似文献   

8.
C Jiang  JP Hamm  VK Lim  IJ Kirk  X Chen  Y Yang 《PloS one》2012,7(7):e41411
Pitch processing is a critical ability on which humans' tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources.  相似文献   

9.
Musical competence may confer cognitive advantages that extend beyond processing of familiar musical sounds. Behavioural evidence indicates a general enhancement of both working memory and attention in musicians. It is possible that musicians, due to their training, are better able to maintain focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally enhanced cognition. All participants easily distinguished the stimuli. We tested the hypothesis that musicians nonetheless would perform better, and that differential brain activity would mainly be present in cortical areas involved in cognitive control such as the lateral prefrontal cortex. The musicians performed better as reflected in reaction times and error rates. Musicians also had larger BOLD responses than non-musicians in neuronal networks that sustain attention and cognitive control, including regions of the lateral prefrontal cortex, lateral parietal cortex, insula, and putamen in the right hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task. The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may be a consequence of focused musical training.  相似文献   

10.
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.  相似文献   

11.
It is well known that circadian rhythms modulate human physiology and behavior at various levels. However, chronobiological data concerning mental and sensorimotor states of motor actions are still lacking in the literature. In the present study, we examined the effects of time-of-day on two important aspects of the human motor behavior: prediction and laterality. Motor prediction was experimentally investigated by means of imagined movements and laterality by comparing the difference in temporal performance between right and left arm movements. Ten healthy participants had to actually perform or to imagine performing arm-pointing movements between two targets at different hours of the day (i.e., 08:00, 11:00, 14:00, 17:00, 20:00, and 23:00?h). Executed and imagined movements were accomplished with both the right and left arm. We found that both imagined and executed arm pointing movements significantly fluctuated through the day. Furthermore, the accuracy of motor prediction, investigated by the temporal discrepancy between executed and imagined movements, was significantly better in the afternoon (i.e., 14:00, 17:00, and 20:00?h) than morning (08:00 and 11:00?h) and evening (23:00?h). Our results also revealed that laterality was not stable throughout the day. Indeed, the smallest temporal differences between the two arms appeared at 08:00 and 23:00?h, whereas the largest ones occurred at the end of the morning (11:00?h). The daily variation of motor imagery may suggest that internal predictive models are flexible entities that are continuously updated throughout the day. Likewise, the variations in temporal performance between the right and the left arm during the day may indicate a relative independence of the two body sides in terms of circadian rhythms. In general, our findings suggest that cognitive (i.e., mental imagery) and motor (i.e., laterality) states of human behavior are modulated by circadian rhythms. (Author correspondence: )  相似文献   

12.
Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.  相似文献   

13.
Obese individuals experience pervasive stigmatization. Interventions attempting to reduce obesity stigma by targeting its origins have yielded mixed results. This randomized, controlled study examined the effectiveness of two interventions to reduce obesity stigma: cognitive dissonance and social consensus. Participants were college undergraduate students (N = 64, 78% women, mean age = 21.2 years, mean BMI = 23.1 kg/m2) of diverse ethnicities. Obesity stigma (assessed with the Antifat Attitudes Test (AFAT)) was assessed at baseline (Visit 1) and 1 week later, immediately following the intervention (Visit 2). Participants were randomly assigned to one of three intervention groups where they received standardized written feedback on their obesity stigma levels. Cognitive dissonance participants (N = 21) were told that their AFAT scores were discrepant from their values (high core values of kindness and equality and high stigma), social consensus participants (N = 22) were told their scores were discrepant from their peers' scores (stigma much higher than their peers), and control participants (N = 21) were told their scores were consistent with both their peers' scores and their own values. Following the intervention, omnibus analyses revealed significant group differences on the AFAT Physical/Romantic Unattractiveness subscale (PRU; F (2, 59) = 4.43, P < 0.05). Planned contrasts revealed that cognitive dissonance group means were significantly lower than control means for AFAT total, AFAT PRU subscale, and AFAT social/character disparagement subscale (all P < 0.05). No significant differences were found between social consensus and controls. Results from this study suggest that cognitive dissonance interventions may be a successful way to reduce obesity stigma, particularly by changing attitudes about the appearance and attractiveness of obese individuals.  相似文献   

14.
Imagery is a cognitive process during which people use their minds to create (or recreate) experiences that are similar to real-life situations. This study examined how college athletes used imagery during weight training. Subjects were 295 Division I (n = 163) and Division II (n = 132) college student athletes (men: n = 138, women: n = 157) who participated in a weight training program as a requirement of their sport. They completed a slightly modified version of the "Weight Lifting Imagery Questionnaire." Results showed that appearance imagery (i.e., images related to the attainment of a fit-looking body) was used and considered the most effective followed by technique imagery (i.e., images related to performing the skill and techniques correctly with good form) and energy imagery (i.e., images related to getting "psyched up" or feeling energized). Other variables that effected imagery use were gender, age, time of season, and levels of motivation. In addition, gender, previous imagery training, and level of motivation had an effect on the perceptions of imagery effectiveness. Confidence in the ability to image was associated with both imagery use and effectiveness, and imagery use and effectiveness were associated with confidence in the weight room. The findings support previous research in exercise imagery that appearance imagery is most used followed by technique and energy imagery and extend them in such a way that strength coaches have practical advice on how to use imagery in a positive way with their athletes. Suggestions about how strength coaches can use imagery with their clients are provided.  相似文献   

15.
Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms.  相似文献   

16.
Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices'' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one''s representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.  相似文献   

17.
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.  相似文献   

18.
Music performance is both a natural human activity, present in all societies, and one of the most complex and demanding cognitive challenges that the human mind can undertake. Unlike most other sensory-motor activities, music performance requires precise timing of several hierarchically organized actions, as well as precise control over pitch interval production, implemented through diverse effectors according to the instrument involved. We review the cognitive neuroscience literature of both motor and auditory domains, highlighting the value of studying interactions between these systems in a musical context, and propose some ideas concerning the role of the premotor cortex in integration of higher order features of music with appropriately timed and organized actions.  相似文献   

19.
We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.  相似文献   

20.
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号