首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotics have revolutionized the treatment of infectious disease but have also rapidly selected for the emergence of resistant pathogens. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of this resistance, which suggests that new strategies to combat bacterial infections may be required. An improved understanding of bacterial stress responses and evolution suggests that in some circumstances, the ability of bacteria to survive antibiotic therapy either by transiently tolerating antibiotics or by evolving resistance requires specific biochemical processes that may themselves be subject to intervention. Inhibiting these processes may prolong the efficacy of current antibiotics and provide an alternative to escalating the current arms race between antibiotics and bacterial resistance. Though these approaches are not clinically validated and will certainly face their own set of challenges, their potential to protect our ever-shrinking arsenal of antibiotics merits their investigation. This Review summarizes the early efforts toward this goal.  相似文献   

2.
New strategies for combating multidrug-resistant bacteria   总被引:2,自引:0,他引:2  
Antibiotic resistance is a problem that continues to challenge the healthcare sector. In particular, multidrug resistance is now common in familiar pathogens such as Staphylococcus aureus and Mycobacterium tuberculosis, as well as emerging pathogens such as Acinetobacter baumannii. New antibiotics and new therapeutic strategies are needed to address this challenge. Advances in identifying new sources of antibiotic natural products and expanding antibiotic chemical diversity are providing chemical leads for new drugs. Inhibitors of resistance mechanisms and microbial virulence are orthogonal strategies that are also generating new chemicals that can extend the life of existing antibiotics. This new chemistry, coupled with a growing understanding of the mechanisms, origins and distribution of antibiotic resistance, position us to tackle the challenges of antibiotic resistance in the 21st century.  相似文献   

3.
抗生素耐药性的研究进展与控制策略   总被引:2,自引:1,他引:1  
抗生素是治疗细菌感染的有效药物,然而抗生素在人类医学及农业生产中的大规模使用催生了细菌耐药性在环境中的快速扩散和传播,特别是多种抗生素的联合使用更是促进了多重耐药性的产生,严重威胁着人类和动物健康及食品与环境安全,相关问题已经引起人们的警觉。因此新研究主要集中在以下几方面:利用组学及合成生物学等方法挖掘并合成新型抗生素;利用高通量技术等系统分析环境中耐药菌及耐药基因新的传播途径及产生的新耐药机制;减抗、替抗及控制耐药基因的策略及其相关工艺。因此,在全面认识耐药基因在环境中传播规律的基础上,如何绿色高效地切断传播途径仍是目前研究的热点。基于此,本文在细菌水平上阐述了抗生素的研发历程、耐药性的发展及控制策略,从而为有效遏制细菌耐药性的发展提供思路。  相似文献   

4.
Expanding the soil antibiotic resistome: exploring environmental diversity   总被引:2,自引:0,他引:2  
Antibiotic resistance has largely been studied in the context of failure of the drugs in clinical settings. There is now growing evidence that bacteria that live in the environment (e.g. the soil) are multi-drug-resistant. Recent functional screens and the growing accumulation of metagenomic databases are revealing an unexpected density of resistance genes in the environment: the antibiotic resistome. This challenges our current understanding of antibiotic resistance and provides both barriers and opportunities for antimicrobial drug discovery.  相似文献   

5.
Microbial resistance is emerging faster than we are replacing our armamentarium of antimicrobial agents. Resistance to penicillin developed soon after it was introduced into clinical practice in 1940s. Now resistance developed to every major class of antibiotics. In healthcare facilities around the world, bacterial pathogens that express multiple resistance mechanisms are becoming common. The origins of antibiotic resistance genes can be traced to the environmental microbiota. Mechanisms of antibiotic resistance include alterations in bacterial cell wall structure, growth in biofilms, efflux pump expression, modification of an antibiotic target or acquisition of a new target and enzymatic modification of the antibiotic itself. Specific examples of each mechanism are discussed in this review. Some approaches to counter resistance include antibiotic stewardship, co-administration with resistance inhibitors, exploiting genome data in search of new targets and use of non-antibiotic antimicrobials for topical indications. A coordinated effort from government, public and industry is needed to deal with antibiotic resistance health care crisis.  相似文献   

6.
Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science “nanotechnology” to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.  相似文献   

7.
Pathogens are becoming nearly untreatable due to the rise in gaining new resistance against standard antibiotics. Coexistence of microbial pathogens, antibiotics and antibiotic resistant genes (ARGs) in wastewater treatment plants (WWTP) provide favourable conditions for the development of new antibiotic resistant bacteria (ARB); facilitate horizontal gene transfer among pathogens and may also serve as a hotspot for the spread of ARB and genes into the environment. In this study, the current status of wastewater treatment systems in the removal of pathogens, ARGs, and antibiotic residues are discussed. WWTP are efficient in removing pathogens and antibiotic residues to a greater extend during secondary and tertiary treatment processes. Recent studies, however, have shown high variations in the presence of pathogens including ARB as well as antibiotic resistance genes (ARG) in the final effluent. Prolonged sludge retention time (SRT) and hydraulic retention time (HRT) during secondary treatment will facilitate antibiotic removal by adsorption and biodegradation. However, the above conditions can also lead to the enhancement of antibiotic resistance process in microbes. Therefore, optimum conditions for the operation of conventional WWTP for the efficient removal of antibiotics are yet to be established. The removal of antibiotic residues can be accelerated by combining conventional activated sludge (CAS) process with an additional treatment technology involving dosing with ozone. The advanced biological treatment method using membrane bioreactors (MBR) in combination with coagulation reportedly has the best ARG removal efficiency, and removes both ARB and extracellular ARGs. While studies have predicted the fate for ARGs in wastewater treatment plants, the mechanisms of ARGs acquisition remains to be conclusively established. Thus, strategies to investigate the underlying mechanism of acquisition of ARGs within the WWTP are also provided in this review.  相似文献   

8.
The clinical need for new classes of antibiotic continues to grow, as drug resistance erodes the efficacy of current therapies. Historically, most antibiotics were discovered by random screening campaigns, but over the past 20 years, this strategy has largely failed to deliver a sufficient range of chemical diversity to keep pace with changing clinical profiles. A more rational approach to drug hunting has been greatly potentiated by the availability of bacterial genomic information. The rapid progress in sequencing and analysis of these small, prokaryotic genomes has enabled the concomitant development of powerful new technologies that are already enhancing the potential utility of genomic information. The future promises versatile and precise tools to understand what makes a successful antibiotic and moreover the means to identify and evaluate novel classes of drug.  相似文献   

9.
利用基因组数据和生物信息学分析方法,快速鉴定耐药基因并预测耐药表型,为细菌耐药状况监测提供了有力辅助手段。目前,已有的数十个耐药数据库及其相关分析工具这些资源为细菌耐药基因的识别以及耐药表型的预测提供了数据信息和技术手段。随着细菌基因组数据的持续增加以及耐药表型数据的不断积累,大数据和机器学习能够更好地建立耐药表型与基因组信息之间的相关性,因此,构建高效的耐药表型预测模型成为研究热点。本文围绕细菌耐药基因的识别和耐药表型的预测,针对耐药相关数据库、耐药特征识别理论与方法、耐药数据的机器学习与表型预测等方面展开讨论,以期为细菌耐药的相关研究提供手段和思路。  相似文献   

10.
Antibiotic resistance is being found with increasing frequency in both pathogenic and commensal bacteria of humans and animals. Quantifying resistance within and between bacterial and host populations presents scientists with complex challenges in terms of laboratory methodologies and sampling design. Here, we discuss, from an epidemiological perspective, how antibiotic resistance can be defined and measured and the limitations of current approaches.  相似文献   

11.
Metronidazole is an antibiotic that has been effective against many microaerophilic microorganisms with importance in medicine and animal husbandry. The development of increasing resistance against current treatments by many of these organisms has created an urgent need to establish the molecular bases of resistance, knowledge which will help to develop novel diagnostic methods and identify new therapeutic targets. Significant progress has been made in understanding resistance to this antibiotic in the human pathogens Helicobacter pylori and, to a lesser extent, Campylobacter spp. However, insufficient knowledge of the physiology and genetics of these and other related bacteria has led to investigations based on hypotheses that themselves must be established more thoroughly. This review presents the status of our current knowledge of metronidazole resistance and outlines reasons to explain some of the conflicting evidence and controversy in the interpretation of results in this area.  相似文献   

12.
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.  相似文献   

13.
Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three “infrastructure” processes central to the movement of genes among bacteria.  相似文献   

14.
Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria.  相似文献   

15.
One of the most serious threats to human health is antibiotic resistance, which has left the world without effective antibiotics. While continuous research and inventions for new antibiotics are going on, especially those with new modes of action, it is unlikely that this alone would be sufficient to win the battle. Furthermore, it is also important to investigate additional approaches. One such strategy for improving the efficacy of existing antibiotics is the discovery of adjuvants. This review has collected data from various studies on the current crisis and approaches for combating multi-drug resistance in microbial pathogens using phytochemicals. In addition, the nano antibiotic approaches, are discussed, highlighting the high potentials of essential oils, alkaloids, phenolic compounds, and nano antibiotics in combating antibiotic resistance.  相似文献   

16.
抗生素抗性基因在环境中的传播扩散及抗性研究方法   总被引:5,自引:0,他引:5  
抗生素在医药、畜牧和水产养殖业的大量使用造成了环境中抗性耐药菌和抗性基因日益增加,抗生素抗性基因作为一种新型环境污染物引起人们的广泛关注.本文综述了近年来国内外有关抗生素抗性基因的研究进展,其在水、土壤、空气等环境介质中和动,植物体内的传播扩散,以及开展环境中抗生素抗性基因研究的必要性,重点介绍了有关抗生素抗性(包括抗性细菌和抗性基因)的研究方法,指出抗性基因研究中存在的问题,并对未来的相关研究进行了展望.  相似文献   

17.
Antibiotic-resistant bacteria (ARB) have gained increased notoriety due to their continued detection in environmental media and consequently their threat to human and animal health. The continuing spread of antibiotic resistance throughout the environment is of growing environmental and public health concern, making it difficult to treat harmful resistant diseases. This paper examines the presence of antibiotics, ARB, and antibiotic-resistant genes (ARGs) in aquatic environments; the effectiveness of current water treatment strategies to remove them; and risk assessment methods available that can be used to evaluate the risk from antibiotic resistance. Antibiotics, ARB, and ARGs have been reported at varying levels in wastewater treatment plants, hospital wastewater, irrigation water, recreational water, and drinking water. There are many different water treatments capable of reducing antibiotic resistance (including chlorination, UV, and ozone); however, no one method can fully eliminate it with much variation in the reported effects. Risk assessment models can be used for interpreting field data into the risk to human health from antibiotic resistance. Currently, there is no gold standard risk assessment method for evaluating antibiotic resistance. Methods in this area need further development to reflect evolving risk assessment methodologies and dynamic data as it emerges.  相似文献   

18.
19.
AIMS: The purpose of this study was to investigate the antibiotic resistance and clonal lineage of serogroup B Salmonella isolated from patients suspected of suffering from enteric fever in Accra, Ghana. METHODS AND RESULTS: Serogroup B Salmonella were isolated from blood (n=28), cerebral spinal fluid (CSF) (n=1), or urine (n=2), and identified based on standard biochemical testing and agglutinating antisera. Isolates were examined for their susceptibility to ampicillin, chloramphenicol, tetracycline and trimethoprim-sulfamethoxazole. Most of the isolates could be classified as multiple-drug resistant. Furthermore, the genetic location of resistance genes was shown to be on conjugative plasmids. Genetic fingerprinting by plasmid profiling, enterobacterial repetitive intergenic consensus (ERIC)-PCR, and repetitive element (REP)-PCR were performed to determine the diversity among the isolates. Plasmid profiling discriminated five unique groupings, while ERIC-PCR and REP-PCR resulted in two and three groupings, respectively. CONCLUSIONS: A high rate of antibiotic resistance was associated with the Salmonella isolates and the genes responsible for the resistance are located on conjugative plasmids. Also, there appears to be minimal diversity associated with the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: As a result of the increasing antibiotic resistance among bacteria of all genera, surveys to monitor microbial populations are critical to determine the extent of the problem. The inability to treat many infectious diseases with current antibiotic regimens should prompt the medical community to be more prudent with its antibiotic use.  相似文献   

20.
The study of antibiotic resistance has in the past focused on organisms that are pathogenic to humans or animals. However, the development of resistance in commensal organisms is of concern because of possible transfer of resistance genes to zoonotic pathogens. Conjugative plasmids are genetic elements capable of such transfer and are traditionally thought to engender a fitness burden on host bacteria. In this study, conjugative apramycin resistance plasmids isolated from newborn calves were characterized. Calves were raised on a farm that had not used apramycin or related aminoglycoside antibiotics for at least 20 months prior to sampling. Of three apramycin resistance plasmids, one was capable of transfer at very high rates and two were found to confer fitness advantages on new Escherichia coli hosts. This is the first identification of natural plasmids isolated from commensal organisms that are able to confer a fitness advantage on a new host. This work indicates that reservoirs of antibiotic resistance genes in commensal organisms might not decrease if antibiotic usage is halted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号