共查询到20条相似文献,搜索用时 15 毫秒
1.
Perkins KJ Byers S Yogalingam G Weber B Hopwood JJ 《The Journal of biological chemistry》1999,274(52):37193-37199
Mucopolysaccharidosis IIIA (MPS-IIIA) is an autosomal recessive lysosomal storage disorder caused by the deficiency of sulfamidase (NS; EC 3.10.1.1), resulting in defective degradation and storage of heparan sulfate. This paper reports the production and characterization of monoclonal and polyclonal antibodies against recombinant human sulfamidase (rhNS) to quantitate and characterize normal and mutant sulfamidase produced from the wild type NS expression vector. Glycosylation and phosphorylation studies of immunoprecipitated rhNS show that all five potential glycosylation sites are utilized, with three high mannose/hybrid oligosaccharides and two simpler chains, with at least one functional mannose 6-phosphate group. An NS quantification system was developed to determine the effect of the three most common and severe patient mutations: S66W (Italy), R74C (Poland), and R245H (The Netherlands). The quantity and specific activity of expressed mutant rhNS was significantly lower than expressed normal rhNS, with 0.3, 0.2, and 0.05% of normal rhNS produced and 15, 17, and 83% of normal specific activity for S66W, R74C, and R245H observed, respectively. The recent structural elucidation of N-acetylgalactosamine-4-sulfatase was utilized to postulate the effect on the structure-function relationship of NS. The characterization of normal and mutated rhNS has relevance for efficient diagnosis and therapeutic developments for MPS-IIIA patients. 相似文献
2.
Sanfilippo syndrome type B, or mucopolysaccharidosis (MPS) IIIB, is an autosomal recessive disease caused by a deficiency of lysosomal α-N-acetylglucosaminidase (NAGLU). In Dromaius novaehollandiae (emu), a progressive neurologic disease was recently discovered, which was characterized by NAGLU deficiency and heparan sulfate accumulation. To define the molecular basis, the sequences of the normal emu NAGLU cDNA and gene were determined by PCR-based approaches using primers for highly conserved regions of evolutionarily distant NAGLU homologues. It was observed that the emu NAGLU gene is structurally similar to that of human and mouse, but the introns are considerably shorter. The cDNA had an open reading frame (ORF) of 2259 bp. The deduced amino acid sequence is estimated to share 64% identity with human, 63% with mouse, 41% with Drosophila, 39% with tobacco, and 35% with the Caenorhabditis elegans enzyme. Three normal and two affected emus were studied for nucleotide sequence covering the entire coding region and exon–intron boundaries. Unlike the human gene, emu NAGLU appeared to be highly polymorphic: 19 variations were found in the coding region alone. The two affected emus were found to be homozygous for a 2-bp deletion, 1098-1099delGG, in exon 6. The resulting frameshift predicts a longer ORF of 2370 bp encoding a polypeptide with 37 additional amino acids and 387 altered amino acids. The availability of mutation screening in emus now permits early detection of MPS IIIB in breeding stocks and is an important step in characterizing this unique, naturally occurring avian model for the development of gene transfer studies. 相似文献
3.
Mucopolysaccharidosis 3 A (Sanfilippo A disease): deficiency of a heparin sulfamidase in skin fibroblasts and leucocytes 总被引:11,自引:0,他引:11
H Kresse 《Biochemical and biophysical research communications》1973,54(3):1111-1118
Cultured skin fibroblasts and peripheral leucocytes from patients with Sanfilippo A disease are strikingly deficient in sulfamidase activity (sulfamatase, EC 3.1.6.?), as measured with heparin - N35SO4. A partial sulfamidase deficiency was found in the cells of the heterozygote carriers. Since Sanfilippo A fibroblasts have normal sulfate ester hydrolase activities towards oligosaccharides prepared from 35SO4-labelled heparan sulfate by nitrous acid treatment, the basic defect in Sanfilippo A disease is considered to be the inactivity of a heparin (heparan sulfate) sulfamidase. 相似文献
4.
Hrebícek M Mrázová L Seyrantepe V Durand S Roslin NM Nosková L Hartmannová H Ivánek R Cízkova A Poupetová H Sikora J Urinovská J Stranecký V Zeman J Lepage P Roquis D Verner A Ausseil J Beesley CE Maire I Poorthuis BJ van de Kamp J van Diggelen OP Wevers RA Hudson TJ Fujiwara TM Majewski J Morgan K Kmoch S Pshezhetsky AV 《American journal of human genetics》2006,79(5):807-819
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane. 相似文献
5.
William C. Lamanna Roger Lawrence Stéphane Sarrazin Carlos Lameda-Diaz Philip L. S. M. Gordts Kelley W. Moremen Jeffrey D. Esko 《The Journal of biological chemistry》2012,287(43):36283-36290
Inherited defects in the ability to catabolize glycosaminoglycans result in lysosomal storage disorders known as mucopolysaccharidoses (MPS), causing severe pathology, particularly in the brain. Enzyme replacement therapy has been used to treat mucopolysaccharidoses; however, neuropathology has remained refractory to this approach. To test directly whether substrate reduction might be feasible for treating MPS disease, we developed a genetic model for substrate reduction therapy by crossing MPS IIIa mice with animals partially deficient in heparan sulfate biosynthesis due to heterozygosity in Ext1 and Ext2, genes that encode the copolymerase required for heparan sulfate chain assembly. Reduction of heparan sulfate by 30–50% using this genetic strategy ameliorated the amount of disease-specific biomarker and pathology in multiple tissues, including the brain. In addition, we were able to demonstrate that substrate reduction therapy can improve the efficacy of enzyme replacement therapy in cell culture and in mice. These results provide proof of principle that targeted inhibition of heparan sulfate biosynthetic enzymes together with enzyme replacement might prove beneficial for treating mucopolysaccharidoses. 相似文献
6.
Evidence for Genetic Heterogeneity in the Carbohydrate-Deficient Glycoprotein Syndrome Type I (CDG1)
Gert Matthijs Eric Legius Els Schollen Petra Vandenberk Jaak Jaeken Rita Barone Agata Fiumara Gepke Visser Marie Lambert Jean-Jacques Cassiman 《Genomics》1996,35(3):597
We have analyzed a series of polymorphic markers on chromosome 16p13 in 17 families with carbohydrate-deficient glycoprotein syndrome type I (CDG1). First, linkage to the region between D16S406 and D16S500 is confirmed. The telomeric border of the candidate region is now definitively placed proximal to D16S406 by crossovers observed in 2 families. Second, in 1 family with 2 affected siblings, the disease is not linked to chromosome 16p. Genetic heterogeneity has not been previously reported for CDG1, and this observation has implications for prenatal diagnosis. Third, allelic associations suggest that the disease locus is localized close to D16S414/D16S497. This places the region of interest centromeric of its published localization. 相似文献
7.
Animal Model Studies of Allelism: Characterization of Arylsulfatase B Mutations in Homoallelic and Heteroallelic (Genetic Compound) Homozygotes with Feline Mucopolysaccharidosis VI 总被引:2,自引:0,他引:2 下载免费PDF全文
The identification of a second structural gene mutation at the feline arylsulfatase B locus (MPS VIb) provided the opportunity to investigate the expression of allelism by characterization of the residual enzymatic activity in feline mucopolysaccharidosis VI, an animal analogue of human Maroteaux-Lamy syndrome. Matings were designed to produce affected homozygotes who were homoallelic for the MPS VIa and MPS VIb mutations or heteroallelic genetic compounds (MPS VIa/VIb). The physicokinetic and immunological properties of the partially purified residual hepatic arylsulfatase B isozymes from the affected homoallelic and heteroallelic cats were compared to those of the normal feline enzyme. The residual hepatic arylsulfatase B activities from the inbred MPS VIa and MPS VIb homozygotes were distinguished by differences in physicokinetic and immunological properties. The newly identified mutant isozyme b had abnormal kinetic properties toward artificial and natural substrates, normal cryo- and thermostabilities, a normal molecular weight and an altered electrophoretic mobility. Polyacrylamide gel electrophoresis demonstrated that the mutant b subunits formed dimers with normal subunits in obligate heterozygotes (MPS VI+/b). In contrast, mutant isozyme a subunits from obligate MPS VIa/+ heterozygotes did not dimerize with the normal subunit, and the mutant and normal isozymes could be separated by anion exchange chromatography and polyacrylamide gel electrophoresis. Characterization of the partially purified residual hepatic arylsulfatase B activity from the heteroallelic homozygotes revealed the presence of both mutant isozymes a and b. The demonstration of two allelic mutations in the feline arylsulfatase B gene documented the occurrence of genetic heterogeneity in feline mucopolysaccharidosis VI and permitted characterization of the enzymatic defect in homoallelic and heteroallelic (genetic compound) homozygotes, providing a model for the study of allelism in human genetic disorders. 相似文献
8.
Bhaumik M Muller VJ Rozaklis T Johnson L Dobrenis K Bhattacharyya R Wurzelmann S Finamore P Hopwood JJ Walkley SU Stanley P 《Glycobiology》1999,9(12):1389-1396
Mucopolysaccharidosis type III A (MPS III A, Sanfilippo syndrome) is a rare, autosomal recessive, lysosomal storage disease characterized by accumulation of heparan sulfate secondary to defective function of the lysosomal enzyme heparan N- sulfatase (sulfamidase). Here we describe a spontaneous mouse mutant that replicates many of the features found in MPS III A in children. Brain sections revealed neurons with distended lysosomes filled with membranous and floccular materials with some having a classical zebra body morphology. Storage materials were also present in lysosomes of cells of many other tissues, and these often stained positively with periodic-acid Schiff reagent. Affected mice usually died at 7-10 months of age exhibiting a distended bladder and hepatosplenomegaly. Heparan sulfate isolated from urine and brain had nonreducing end glucosamine- N -sulfate residues that were digested with recombinant human sulfamidase. Enzyme assays of liver and brain extracts revealed a dramatic reduction in sulfamidase activity. Other lysosomal hydrolases that degrade heparan sulfate or other glycans and glycosaminoglycans were either normal, or were somewhat increased in specific activity. The MPS III A mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy. 相似文献
9.
Weining Rong Xue Chen Kanxing Zhao Yani Liu Xiaoxing Liu Shaoping Ha Wenzhou Liu Xiaoli Kang Xunlun Sheng Chen Zhao 《PloS one》2014,9(5)
Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease. 相似文献
10.
Splicing Defects in the COL3A1 Gene: Marked Preference for 5′ (Donor) Splice-Site Mutations in Patients with Exon-Skipping Mutations and Ehlers-Danlos Syndrome Type IV 下载免费PDF全文
Ulrike Schwarze Jayne A. Goldstein Peter H. Byers 《American journal of human genetics》1997,61(6):1276-1286
Ehlers-Danlos syndrome (EDS) type IV results from mutations in the COL3A1 gene, which encodes the constituent chains of type III procollagen. We have identified, in 33 unrelated individuals or families with EDS type IV, mutations that affect splicing, of which 30 are point mutations at splice junctions and 3 are small deletions that remove splice-junction sequences and partial exon sequences. Except for one point mutation at a donor site, which leads to partial intron inclusion, and a single base-pair substitution at an acceptor site, which gives rise to inclusion of the complete upstream intron into the mature mRNA, all mutations result in deletion of a single exon as the only splice alteration. Of the exon-skipping mutations that are due to single base substitutions, which we have identified in 28 separate individuals, only two affect the splice-acceptor site. The underrepresentation of splice acceptor-site mutations suggests that the favored consequence of 3' mutations is the use of an alternative acceptor site that creates a null allele with a premature-termination codon. The phenotypes of those mutations may differ, with respect to either their severity or their symptomatic range, from the usual presentation of EDS type IV and thus have been excluded from analysis. 相似文献
11.
12.
Maria Paola Cecchini Dario Viviani Marco Sandri Antje H?hner Thomas Hummel Carlo Zancanaro 《PloS one》2016,11(1)
Background
Down syndrome (DS) shows neuropathology similar to Alzheimer disease, which presents olfactory impairment. Previous work showed olfactory impairment in DS, but a comprehensive evaluation of olfactory function in DS is lacking.Methods
We investigated a large number (n = 56; M = 31, F = 25) DS participants (age range18-57y) using the “Sniffin’ Sticks” Extended test. This comprises three subtests (threshold, discrimination, and identification) yielding a global score (TDI) defining normosmia, hyposmia, and functional anosmia. To the best of our knowledge, this is the second largest group of DS people investigated for olfactory function ever. Age- and sex matched euploid individuals (n = 53) were the control.Results
In DS, TDI was lower (16.7±5.13 vs. 35.4±3.74; P<0.001), with DS people performing worse in any subtests (P<0.001 for all); 27 DS participants showed functional anosmia (i.e., TDI<16). In DS, age was weakly and negatively correlated with TDI (r = -0.28, P = 0.036) and identification (r = -0.34, P = 0.012). When participants were stratified in young adults (18-29y) and older adults (30-61y), a significant effect of age was found for identification in both DS (young adults, 8.3±2.58; older adults, 6.9±2.99; P = 0.031) and control (young-adult, 14.3±1.18, older adult, 13.0±1.54; P = 0.016).Conclusion
Olfactory function is overall severely impaired in DS people and may be globally impaired at relatively young age, despite of reportedly normal smell. However, specificity of this olfactory profile to DS should be considered with some caution because cognition was not evaluated in all DS participants and comparison with a control group of non-DS individuals having cognitive disabilities was lacking. Further study is required to longitudinally assess olfactory dysfunction in DS and to correlate it with brain pathology. 相似文献13.
A gene structure of testosterone 6 beta-hydroxylase (P450IIIA) 总被引:3,自引:0,他引:3
M Miyata K Nagata Y Yamazoe R Kato 《Biochemical and biophysical research communications》1991,177(1):68-73
Genomic clones of a rat testosterone 6 beta-hydroxylase have been isolated and characterized as the first gene (P450/6 beta A) among P450IIIA subfamily. This gene spans about 25Kb and consists of 13 exons, which is the largest number of exons among cytochrome P-450 genes reported previously. The nucleotide sequence of the exon region showed high similarity to those of P450PCN2 and P450PCN1 cDNA (Gonzalez, F.J. et al. (1987) Mol. Cell. Biol. 2969-2974), but several replacements and deletions of nucleotide were found between the P450/6 beta A gene and both cDNAs, indicating the existence of multiple P450IIIA genes in rats. 相似文献
14.
Monica Sala-Rabanal Lilia Y. Kucheryavykh Serguei N. Skatchkov Misty J. Eaton Colin G. Nichols 《The Journal of biological chemistry》2010,285(46):36040-36048
Inwardly rectifying potassium channel Kir4.1 is critical for glial function, control of neuronal excitability, and systemic K+ homeostasis. Novel mutations in Kir4.1 have been associated with EAST/SeSAME syndrome, characterized by mental retardation, ataxia, seizures, hearing loss, and renal salt waste. Patients are homozygous for R65P, G77R, C140R or T164I; or compound heterozygous for A167V/R297C or R65P/R199Stop, a deletion of the C-terminal half of the protein. We investigated the functional significance of these mutations by radiotracer efflux and inside-out membrane patch clamping in COSm6 cells expressing homomeric Kir4.1 or heteromeric Kir4.1/Kir5.1 channels. All of the mutations compromised channel function, but the underlying mechanisms were different. R65P, T164I, and R297C caused an alkaline shift in pH sensitivity, indicating that these positions are crucial for pH sensing and pore gating. In R297C, this was due to disruption of intersubunit salt bridge Glu288–Arg297. C140R breaks the Cys108–Cys140 disulfide bond essential for protein folding and function. A167V did not affect channel properties but may contribute to decreased surface expression in A167V/R297C. In G77R, introduction of a positive charge within the bilayer may affect channel structure or gating. R199Stop led to a dramatic decrease in surface expression, but channel activity was restored by co-expression with intact subunits, suggesting remarkable tolerance for truncation of the cytoplasmic domain. These results provide an explanation for the molecular defects that underlie the EAST/SeSAME syndrome. 相似文献
15.
Esther Meyer Neil V. Morgan Shanaz Pasha Fatimah Rahman Bettina Bessières Mohamed T. Yacoubi Tamas Marton Richard C. Trembath Phillip Cox Eamonn R. Maher 《American journal of human genetics》2010,86(3):471-654
Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH), also known as Fowler syndrome, is an autosomal-recessively inherited prenatal lethal disorder characterized by hydranencephaly; brain stem, basal ganglia, and spinal cord diffuse clastic ischemic lesions with calcifications; glomeruloid vasculopathy of the central nervous system and retinal vessels; and a fetal akinesia deformation sequence (FADS) with muscular neurogenic atrophy. To identify the molecular basis for Fowler syndrome, we performed autozygosity mapping studies in three consanguineous families. The results of SNP microarrays and microsatellite marker genotyping demonstrated linkage to chromosome 14q24.3. Direct sequencing of candidate genes within the target interval revealed five different germline mutations in FLVCR2 in five families with Fowler syndrome. FLVCR2 encodes a transmembrane transporter of the major facilitator superfamily (MFS) hypothesized to be involved in regulation of growth, calcium exchange, and homeostasis. This is the first gene to be associated with Fowler syndrome, and this finding provides a basis for further studies to elucidate the pathogenetic mechanisms and phenotypic spectrum of associated disorders. 相似文献
16.
17.
Michael J. Reza Roy T. Young Andre J. Van Herle Vincent DeQuattro Harold S. Cole Josiah Brown 《The Western journal of medicine》1975,123(6):441-446
Medullary carcinoma of the thyroid, pheochromocytoma and multiple mucosal neuromas (MEA-II), a familial disorder of neuroectodermal tissue, is believed to be inherited in an autosomal dominant pattern. The occurrence of this syndrome in twins has not previously been reported. We have documented the presence of MEA-II in a pair of twins. The high incidence of bilaterality of pheochromocytoma is emphasized, as well as the usefulness of preoperative catecholamine fractionation, and vena cava catheterization sampling. 相似文献
18.
Wolfe BJ Ghomashchi F Kim T Abam CA Sadilek M Jack R Thompson JN Scott CR Gelb MH Turecek F 《Bioconjugate chemistry》2012,23(3):557-564
The clinical phenotype of Sanfilippo Syndrome is caused by one of four enzyme deficiencies that are associated with a defect in mucopolysaccharide metabolism. The four subtypes (A, B, C, and D) are each caused by an enzyme deficiency involved in the degradation of heparan sulfate. We have developed a highly efficient synthesis of the substrates and internal standards required for the enzymatic assay of each of the four enzymes. The synthesis of the substrates involves chemical modification of a common intermediate. The substrates and internal standards allow the measurement of the enzymes relevant to heparan N-sulfatase (type A); N-acetyl-α-glucosaminidase (type B); acetyl-CoA:α-glucosamide N-acetyltransferase (type C); and N-acetylglucosamine 6-sulfatase (type D). The internal standards are similar to the substrates and allow for the accurate quantification of the enzyme assays using tandem mass spectrometry. The synthetic substrates incorporate a coumarin moiety and can also be used in fluorometric enzyme assays. We confirm that all four substrates can detect the appropriate Sanfilippo Syndrome in fibroblast lysates, and the measured enzyme activities are distinctly lower by a factor of 10 when compared to fibroblast lysates from unaffected persons. 相似文献
19.
Zbigniew ?uber Agnieszka Ró?d?yńska-?wi?tkowska Agnieszka Jurecka Anna Tylki-Szymańska 《PloS one》2014,9(1)
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked, recessive, lysosomal storage disorder caused by deficiency of iduronate-2-sulfatase. Early bone involvement leads to decreased growth velocity and short stature in nearly all patients. Our analysis aimed to investigate the effects of enzyme replacement therapy (ERT) with idursulfase (Elaprase) on growth in young patients with mucopolysaccharidosis type II. Analysis of longitudinal anthropometric data of MPS II patients (group 1, n = 13) who started ERT before 6 years of age (range from 3 months to 6 years, mean 3.6 years, median 4 years) was performed and then compared with retrospective analysis of data for MPS II patients naïve to ERT (group 2, n = 50). Patients in group 1 received intravenous idursulfase at a standard dose of 0.58 mg/kg weekly for 52–288 weeks. The course of average growth curve for group 1 was very similar to growth pattern in group 2. The average value of body height in subsequent years in group 1 was a little greater than in group 2, however, the difference was not statistically significant. In studied patients with MPS II, idursulfase did not appear to alter the growth patterns. 相似文献
20.
Yaqun Wang Ningtao Wang Han Hao Yunqian Guo Yan Zhen Jisen Shi Rongling Wu 《Current Genomics》2014,15(3):237-243
Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. 相似文献