首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal body replication during estrogen-driven ciliogenesis in the rhesus monkey (Macaca mulatta) oviduct has been studied by stereomicroscopy, rotation photography, and serial section analysis. Two pathways for basal body production are described: acentriolar basal body formation (major pathway) where procentrioles are generated from a spherical aggregate of fibers; and centriolar basal body formation, where procentrioles are generated by the diplosomal centrioles. In both pathways, the first step in procentriole formation is the arrangement of a fibrous granule precursor into an annulus. A cartwheel structure, present within the lumen of the annulus, is composed of a central cylinder with a core, spoke components, and anchor filaments. Tubule formation consists of an initiation and a growth phase. The A tubule of each triplet set first forms within the wall material of the annulus in juxtaposition to a spoke of the cartwheel. After all nine A tubules are initiated, B and C tubules begin to form. The initiation of all three tubules occurs sequentially around the procentriole. Simultaneous with tubule initiation is a nonsequential growth of each tubule. The tubules lengthen and the procentriole is complete when it is about 200 mµ long. The procentriole increases in length and diameter during its maturation into a basal body. The addition of a basal foot, nine alar sheets, and a rootlet completes the maturation process. Fibrous granules are also closely associated with the formation of these basal body accessory structures.  相似文献   

2.
Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization.  相似文献   

3.
The steps of spermiogenesis and the submicroscopic anatomy of male gametes in Halammovortex nigrifrons are described. During spermiogenesis the cytophore develops pseudopod-like extensions, and bung-like deposits of dark material become attached to the basal bodies of the cilia. During the phase of cell elongation, cilia stay near the edge of the cytophore. Spermatozoa bear two free cilia or flagella. The axonemata are equipped with glycogen islets appearing at regular spaces. The sperm body is characterized by dot-like dense granules linearly arranged, intense glycogen aggregations in a channel-shaped deposition and giant dense bodies. Events of spermiogenesis and the features of mature male gametes in H. nigrifrons corroborate the hypothesis of the existence of a monophylum within the Rhabdocoela encompassing several, but not all taxa of the ”Typhloplanoida” and ”Dalyellioida”. The Dalyelliidae (including the species of the Temnocephalida) belong to this monophylum.  相似文献   

4.
In the present work the spermiogenesis and sperm structure of Matsucoccus feytaudi, a primary pest of the maritime pine in southern eastern Europe, is studied. In addition to the already known characteristics of coccid sperm, such as the absence of the acrosome and mitochondria, and the presence of a bundle of microtubules responsible for sperm motility, a peculiar structure from which the microtubule bundle takes origin is described. Such a structure – a short cylinder provided with a central hub surrounded by several microtubules with a dense wall – is regarded as a Microtubule Organizing Centre (MTOC). During spermiogenesis, quartets of fused spermatids are formed; from each spermatid, a bundle of microtubules, generated by the MTOC, projects from the cell surface. Each cell has two centrioles, suggesting the lack of a meiotic process and the occurrence of parthenogenesis. At the end of the spermiogenesis, when the cysts containing bundles of sperm are formed, part of the nuclear material together with the MTOC structure is eliminated. Based on the origin of the microtubular bundle from the MTOC, the nature of the bundle as a flagellum is discussed.  相似文献   

5.
Spermatogenesis and the sperm structure of the terebrantian Aeolothrips intermedius Bagnall are described. Spermatogenesis consists of two mitotic divisions; the second is characterized by the loss of half of the spermatids, which have pyknotic nuclei. Early spermatids have two centrioles, but when spermiogenesis starts, a third centriole is produced. The three basal bodies give rise to three flagella; later these fuse into a single flagellum which contains three 9 + 0 axonemes. The basal bodies are surrounded by a large amount of centriole adjunct material. During spermiogenesis this material contributes to the shifting of the three axonemes towards the anterior sperm region parallel to the elongating nucleus, and it is transformed into a dense cylinder. In the mature spermatids the three axonemes amalgamate to create a bundle of 27 doublet microtubules. Near the end of spermiogenesis the dense cylinder of the centriole adjunct lies parallel to the nucleus and the axonemes. It ends where the mitochondrion appears at half-sperm length. We confirm that Terebrantia testes have a single sperm cyst; their sperm are characterized by a cylindrical nucleus, three axonemes fused into one, a small mitochondrion and a short cylindrical centriole adjunct which corresponds to the dense body described in a previous work. The acrosome is lacking. At the midpoint of the anterior half of the sperm the outline of the cross-section is bilobed, with the nucleus contained in a pocket evagination of the plasma membrane. These characters are discussed in light of a comparison between Tubulifera and Terebrantia.  相似文献   

6.
The spermiogenesis, the sperm structure and the sperm motility of Marchalina hellenica (Gennadius) were examined. In the early spermiogenesis a centriolar apparatus was identified, but this structure is not involved in the production of the sperm flagellum. As in other Coccoidea, the flagellar axoneme originates by the activity of the thickened tip of the numerous microtubules surrounding the nuclear anterior region close to the periphery of the cell. This region pushes against a narrow cytoplasmic layer, giving rise to a papilla. In this region a novel structure, consisting of a regular network of thin filaments, arranged orthogonally to the bundle of microtubules, is visible. The sperm flagellum consists of a series of about 260 microtubules, regularly arranged in rings around the axial nucleus. This latter extends in the middle part of the sperm length. As usual in scale insects, sperm form a bundle, which in M. hellenica is composed of 64 sperm cells, surrounded by somatic cyst cells. The sperm bundle has an helicoidal array, with a cap of dense material at its apex, lending the anterior and the posterior region of the sperm bundle with a different structural organization. This difference is responsible of the different speed gradient observed in the helical wave propagating along the sperm bundle.  相似文献   

7.
Mature sperm has two axonemes of the 9 + '1' pattern incorporated in the sperm body, a row of peripheral microtubules interrupted along part of the sperm by the axonemes, some microtubules in the interior of the sperm and a long lateral extension (lobe) of the sperm body, an elongate nucleus and mitochondrion, and many dense rod-like structures. A supporting rod extends underneath a specialized region consisting of alternating thin and thick transverse rows of irregular dense patches, and with surface ridges around (all or) most of the surface of the sperm. Primary spermatocytes in the prophase of the first meiotic division have synaptonemal complex(es), and are rich in mitochondria. In early spermiogenesis, mitochondria are arranged around the surface of the nucleus, a dense layer appears at one pole of the nucleus, close to an apposed dense layer at the cell membrane in which a row of microtubules develops. The intercentriolar (= central) body develops close to the nucleus. The fully developed intercentriolar body has a regular striation and is located perpendicular and close to the surface of the nucleus. Two flagella extend into the space surrounding the outgoing median process, their basal bodies are located perpendicular to the intercentriolar body and their cross-striated rootlets extend along the surface of the rounded nucleus. At a later stage, rootlets and flagella become more parallel with the intercentriolar body, the nucleus and the fused mitochondria migrate into the median process, and the flagella become incorporated into the median process (= sperm body). The outgrowing spermatozoa are connected to the cytoplasm of the cytophore by dense arching membranes. Finally, rootlets of flagella are resorbed and the spermatozoa are pinched off close to the basal bodies. Two species (Lobatostoma and Multicotyle) of the same family differ strongly in the type of spermiogenesis, although their mature sperm is of the same basic type, i.e. spermiogenesis is not necessarily more useful for phylogenetic considerations than sperm structure.  相似文献   

8.
This paper describes the replication of centrioles during spermatogenesis in the Prosobranch snail, Viviparus malleatus Reeve. Sections for electron microscopy were cut from pieces of testis fixed in OsO4 and embedded in the polyester resin Vestopal W. Two kinds of spermatocytes are present. These give rise to typical uniflagellate sperm carrying the haploid number of 9 chromosomes, and atypical multiflagellate sperm with only one chromosome. Two centrioles are present in the youngest typical spermatocyte. Each is a hollow cylinder about 160 mµ in diameter and 330 mµ long. The wall consists of 9 sets of triplet fibers arranged in a characteristic pattern. Sometime before pachytene an immature centriole, or procentriole as it will be called, appears next to each of the mature centrioles. The procentriole resembles a mature centriole in most respects except length: it is more annular than tubular. The daughter procentriole lies with its axis perpendicular to that of its parent. It presumably grows to full size during the late prophase, although the maturation stages have not been observed with the electron microscope. It is suggested that centrioles possess a constant polarization. The distal end forms the flagellum or other centriole products, while the proximal end represents the procentriole and is concerned with replication. The four centrioles of prophase (two parents and two daughters) are distributed by the two meiotic divisions to the four typical spermatids, in which they function as the basal bodies of the flagella. Atypical spermatocytes at first contain two normal centrioles. Each of these becomes surrounded by a cluster of procentrioles, which progressively elongate during the late prophase. After two aberrant meiotic divisions the centriole clusters give rise to the basal bodies of the multiflagellate sperm. These facts are discussed in the light of the theory, first proposed by Pollister, that the supernumerary centrioles in the atypical cells are derived from the centromeres of degenerating chromosomes.  相似文献   

9.
Summary Spermatogenesis ofSchizomus palaciosi occurs in cysts in paired tubular testes located ventrally in the opisthosoma. Only few germ cells comprise one cyst. In early spermiogenesis an acrosomal complex composed of a spherical vacuole and a short acrosomal filament is established opposite of which a 9×2+3 flagellum emerges from a flagellar tunnel. The latter, however, is only a short-lasting structure. A manchette of microtubules surrounds nucleus and part of the acrosomal vacuole. The alterations in the arrangement of the microtubules during spermiogenesis are described. The spermatid finally is an elongate cell with a slender acrosomal vacuole on top of the helical nucleus. A deep implantation fossa filled with dense material is encountered. The acrosomal vacuole is accompanied by an intricate paracrosomal lattice structure not known at present of otherArachnida. This structure disappears during final spermiogenesis. The acrosomal filament (perforatorium) reveals filamentous subunits arranged in a regular pattern. Large ovoid mitochondria do not establish a distinct middle piece. Finally the elongate spermatid is coiled to form the mature spherical spermatozoon.The results are discussed under functional and taxonomical aspects.  相似文献   

10.
Ultrastructural changes during spermiogenesis in the flatworm, Notoplana japonica were studied with special attention to organizing process of an acrosome and flagella. During spermiogenesis, the G olgi complex develops conspicuously but it fails to organize the structure of an acrosomal vesicle. Consequently, no acrosome is formed at the apex of the sperm. As a substitute for an acrosomal structure, the slender process at the tip of the mature sperm is prominently occupied with glycogen granules.
The axoneme of the flagellum is formed from the basal body in the protrusion which is juxtaposed to the nucleus of the early spermatid. Two flagella associated with an electron-dense structure (EDS) extend superficially from the spermatid body in opposite directions. Progressively, they take an acute angle to each other and finally run alongside the sperm body. The axoneme consits of nine peripheral doublets with arms, a central cylinder containing an electron dense core, a less dense intermediate zone and fine spokes between the cylinder and doublets.  相似文献   

11.
The spermatozoon of Ophidion sp. possesses an elongated nucleus 8 μm long, a short midpiece (0,6 μm), and a long flagellum (100 μm). The flagellar membrane extends in the form of two diametrically opposed sidefins. Evolving spermatids and spermatozoa are found in the lumen of the seminiferous tubes. The sections of flagella show filamentary and tubular elements disposed parallel to the axoneme microtubules. We have divided the flagella into three types. In type 1 the tip of the sidefins contains 20 to 30 filaments 5 run in diameter and between these and the axoneme 20 to 30 tubular elements 15 to 20 nm in diameter. Type 2 possesses a dense cytoplasm and a few tubular elements 10 nm in diameter disposed at the tip of the sidefins. Type 3 contains a cytoplasm which is not dense and in which we found polysaccharides and 1 to 8 tubular elements forming a palisade which lines the plasma membrane at the tip of the sidefins. We interpret these three types as three successive stages in the organization of the flagellum during spermiogenesis. Type 3 corresponds to the spermatic flagellum. These 10-nm-diameter tubules do not have the same chemical composition as the microtubules. Elements of the cytoskeleton serve as a support for the sidefins.  相似文献   

12.
王昕  常岩林  赵卓  郭明申 《昆虫学报》2014,57(10):1162-1170
【目的】螽斯精子结构复杂,具有特征性的箭头状顶体,是研究昆虫精子形成的理想材料。为了研究螽斯精子形成过程中的动态变化机制,特别是细胞核的凝集机制和箭头状顶体的发生机制,本研究对优雅蝈螽Gampsocleis gratiosa精细胞和精子的细胞核进行了观察。【方法】选择发育良好的优雅蝈螽成虫精巢为研究材料,利用透射电镜技术、普通光学显微镜和荧光显微镜技术,制作光镜切片和电镜切片进行观察。【结果】根据其形态结构变化特征,将优雅蝈螽精子形成过程中的细胞核分为4个阶段:圆形核、叶形核、柱状核和成熟阶段。我们还通过常规HE染色,结合DNA特异性荧光探针DAPI,证明了圆形核时期,精细胞内具有两个明显的球状结构,一个为细胞核,另一个是原顶体;精子成熟阶段,精子尾部排出的细胞质微滴中含有DNA。【结论】优雅蝈螽精子形成过程中,精细胞的细胞核经历了显著的形态变化,精细胞核的形态变化与细胞骨架微管相关,细胞核塑形伴随着染色质的重组。本研究为进一步阐明直翅目昆虫精子形成的分子机制奠定了基础。  相似文献   

13.
The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.  相似文献   

14.
Centrosomes are cellular organelles that have a major role in the spatial organisation of the microtubule network. The centrosome is comprised of two centrioles that duplicate only once during the cell cycle, generating a procentriole from each mature centriole. Despite the essential roles of centrosomes, the detailed structural mechanisms involved in centriole duplication remain largely unknown. Here, we describe human procentriole assembly using cryo‐electron tomography. In centrosomes, isolated from human lymphoblasts, we observed that each one of the nine microtubule triplets grows independently around a periodic central structure. The proximal end of the A‐microtubule is capped by a conical structure and the B‐ and C‐microtubules elongate bidirectionally from its wall. These observations suggest that the gamma tubulin ring complex (γ‐TuRC) has a fundamental role in procentriole formation by nucleating the A‐microtubule that acts as a template for B‐microtubule elongation that, in turn, supports C‐microtubule growth. This study provides new insights into the initial structural events involved in procentriole assembly and establishes the basis for determining the molecular mechanisms of centriole duplication on the nanometric scale.  相似文献   

15.
Summary

The stages of spermiogenesis in Myobia murismusculi were investigated on the basis of ultrastructural analysis of both the testes and the female organs: receptaculum seminis and seminal duct. The walls of the testes consist of a thin epithelial layer. Germ and secretory cells lie free in the lumen of the testes. In the early stages of differentiation, both cell types represent clusters of sister cells joined by intercellular bridges. Each secretory cell contains prominent RER and Golgi complex, which produce single dense granule. Growing gradually the granule fills the whole volume of the cell's cytoplasm. Mature secretory cells disintegrate and the secretory product discharges into the testicular lumen. The germ cells are represented by the early, the intermediate and the late spermatids as well as the immature sperm (prospermia). Neither spermatogonia nor meiotic figures were observed in adult males. As spermiogenesis starts, numerous narrow invaginations of the outer membrane (peripheral channels) develop on the cell surface. They form a wide circumferential network connected to pinocytotic vesicles. Owing to the secretory activity of the Golgi complex, a large acrosomal granule is formed in the early spermatids. A long acrosomal filament runs along the intranuclear canal. Nuclear material condenses and forms two spherical bodies of different electron density. The lighter one can be observed until the stage of the late spermatids, when the nuclear envelope almost completely disappears. The electron-dense nuclear body transforms into a definite chromatin body, which is observed in the mature sperm as a cup-shaped structure. The late spermatids are characterized by the presence of a large electronlucent vacuole, which seems to be unique for the process of spermiogenesis in Actinedida. After the spermia enter the female genital tract, the peripheral channels disappear as well as the vacuole. The cells form long amoeboid arms with a special microtubular layer underneath the plasma membrane. The chromatin body is encircled by a large acrosomal granule of complex shape provided by long extensions running deep into the cytoplasm. The cytoplasm contains no organelles except for a group of unmodified mitochondria in the post-nuclear region. The main characteristics of the Myobia spermiogenesis are discussed with regard to other actinedid mites.  相似文献   

16.
Spermatogenesis and spermatozoon ultrastructure in the Nile electric catfish Malapterurus electricus are described using scanning and transmission electron microscopy. Although the testis organization conforms to the ‘unrestricted’ spermatogonial type, the species has a rare type of spermatogenesis not previously described among catfishes, ‘semicystic’, in which the cyst ruptures before the spermatozoon stage. Spermiogenesis also involves some peculiar features such as condensation of the chromatin in the posterior part of the nucleus to form a compact electron‐dense mass with some irregular electron‐lucent lacunae, while the uppermost part of the nucleus is a loose electron‐lucent area, absence of the nuclear rotation and, as a consequence, the centriolar complex and the initial segment of each flagellum arise directly in a position perpendicular to the basal pole of the nucleus, and occurrence of numerous vesicles in the midpiece. In addition, spermiogenesis includes migration of the diplosome and mitochondria to the basal pole of the nucleus, formation of two moderate nuclear fossae, each of which contains the centriolar complex, development of two independent flagella and elimination of the excess cytoplasm. The mature spermatozoon has a more or less round head with no acrosome or acrosomal vesicle, a long midpiece with numerous mitochondria and vesicles and two long tails or flagella having the classical axoneme structure of 9 + 2 microtubular doublet pattern and with no lateral fins and membranous compartment. These findings suggest that the ultrastructural features of spermiogenesis and spermatozoa of Melectricus are synapomorphies of types I and II spermiogenesis and spermiogenesis is closely similar to the type described in the Nile catfish Chrysichthys auratus.  相似文献   

17.
The aggregation of chromatin during spermiogenesis in the house cricket and many other animals is an orderly process involving the formation of a series of long, thick, well defined structures. The differentiation of chromatin preliminary to the development of such unusual structures is given attention here. Examination of nuclei after lysis and spreading indicated that fibers with closely spaced nucleosomes, like the fibers of somatic chromatin, make up the chromatin in all stages of early spermiogenesis and most of middle spermiogenesis. The thick structures of late spermatids cannot be formed by aggregation of fibers of this somatic type, however; just before thick structures form, chromatin fibers lose the nucleosomal structure. During the process, fibers with nucleosomes spaced at irregular intervals and with long stretches of smooth thin fiber are found, as if nucleosomes at one site on a fiber are broken down independently of those at adjacent sites. Since prior studies of cricket proteins have indicated that somatic histones persist during the stages when nucleosome structure disappears, the observations imply that the histones which are organized in nucleosomes during early stages must become incorporated into different kinds of nucleoprotein complexes during succeeding stages of spermiogenesis.  相似文献   

18.
The wolf spider Schizocosa malitiosa is a well-known model system for studies on sexual selection in spiders. Despite this, little is known about the morphology of the reproductive system and spermatozoa in this species. In the present study, we investigate the male genital system and sperm cells of S. malitiosa using electron microscopy and provide a computer-based 3D reconstruction of the spermatozoa for the first time for arthropods. In general, the male genital system consists of two long, tube-like testes that lead into convoluted deferent ducts. The ejaculatory duct is enlarged and contains a large quantity of sperm and secretion. As revealed by transmission electron microscopy, only one type of secretion droplet is present in the seminal fluid. The spermatozoa of S. malitiosa resemble an organization known for members of the RTA clade, i.e., with an arrow-shaped acrosomal vacuole partly sunk into the nucleus and a chambered centriolar adjunct (a newly introduced character). This organization provides further support for these characters as potential synapomorphies for the RTA clade. By the end of the spermiogenesis, the nucleus and axoneme coils within the cell and a multi-layered secretion sheath are formed representing cleistospermia. The function of the thick secretion sheath is still unknown, but might be correlated either with the residency time in the female (insemination until oviposition) since female S. malitiosa do not lay eggs before the fourth month after copulation or with the receptivity-inhibiting substances suggested for this species.  相似文献   

19.
Spermiogenesis of the eupyrene sperm in the snail, Fusitriton oregonensis, was studied with light and electron microscopes. Endoplasmic reticulum, which encircles the nucleus in each spermatid, appears to connect with the Golgi body and to interconnect between adjacent spermatids via cytoplasmic bridges. It is suggested that as the Golgi body migrates around the nucleus the endoplasmic reticulum may circulate with it. The alignment of the proacrosome with the nucleus is effected by a 180° rotation of the Golgi body, after which it separates and migrates posteriorly with the residual cytoplasm. Each sperm possesses a well-developed intracellular digestive system as indicated by multivesicular bodies, residual bodies, and myeloid figures. Autophagy begins in the residual cytoplasm before it is released from the middle piece. Microtubules are found outside the nucleus and mitochondria during the final stages of spermiogenesis, when elongation is almost complete. These microtubules appear to be involved in the final shaping and twisting process, in which torsion is locked in the nucleus and the mitochondria spiral around the axoneme. The annulus attaches the distal centriole to the plasma membrane in the early spermatid and as flagellar production begins they move towards the implantation fossa at the base of the nucleus. There are two centrioles in the early spermatid, the distal centriole and procentriole. The small procentriole fuses with the distal centriole in the intranuclear canal to form the centriolar cap of the basal body. This cap is pushed through the end of the nuclear tube and is separated from the subacrosomal space by only the nuclear membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号